آزمایشگاه مکانیک خاک

Address of the local division of the local d

Karl Terzaghi 1883-1963

C.A.Coulomb 1736-1806

WJM Rankine 1820-1872

A.Casagrande 1902-1981

L. Bjerrum 1918-1973

A.W.Skempton 1914-

G.F.Sowers 1921-1996

G.A. Leonards 1921-1997

Soil Testing

آزمایش نفوذ استاندار دSPT Standard penetration test

1-Using a 140 lb. (64 kg) driving mass falling free from a height of 30 in. (762

mm)...

2-Driving the standard split spoon sampler a distance of 18 in. (457 mm) into the soil, and...

3-Counting the number of blows (N) to drive the sampler 12 in. (6 in. plus 6 in.) [152 mm plus 152 mm].

Moisture Content

• The moisture content, m, is defined as

$$m = \frac{Weight of Water}{Weight of Solids} = \frac{W_w}{W_s}$$

In terms of e, S, G_s and γ_w

$$W_w = \gamma_w V_w = \gamma_w e S V_s$$

$$W_s = \gamma_s V_s = \gamma_w G_s V_s$$

hence

$$m = \frac{e S}{G_s}$$

Example 1

• Distribution by mass and weight

Phase	Trimmings Mass	Sample Mass, M	Sample Weight, Mg	
	(g)	(g)	(kN)	
Total	55	290	2845×10^{-6}	
Solid	45	237.3	2327.9×10^{-6}	
Water	10	52.7	517×10^{-6}	

• Distribution by volume (assume $G_s = 2.65$)

Total Volume	$V = \pi r^2 l$
Water Volume	$V_w = \frac{W_w}{\gamma_w}$
Solids Volume	$V_s = \frac{W_s}{\gamma_w G_s}$
Air Volume	$V_a = V - V_s - V_w$

 $m = \frac{W_w}{W_c} = \frac{10}{45} = 0.222 = 22.2\%$ Moisture content $e = \frac{V_v}{V_a} = \frac{V_a + V_w}{V_a} = 0.755$ Voids ratio $S = \frac{V_w}{V_w} = \frac{V_w}{V_w + V_w} = 0.780 = 78.0\%$ **Degree of Saturation** $\gamma_{bulk} = \frac{W}{V} = 18.1 \, kN \, / \, m^3$ Bulk unit weight $\gamma_{dry} = \frac{W_s}{V} = 14.8 \, kN \, / \, m^3$ Dry unit weight $\gamma_{sat} = \frac{(W + 14.9 \times 10^{-6} \times 9.81)}{V} = 19.04 \, kN \, / \, m^3$ Saturated unit weight

Note that $\gamma_{dry} \sim \gamma_{bulk} < \gamma_{sat}$

Particle size is not that useful for fine grained soils

Particle size is not that useful for fine grained soils

Figure 4 Moisture content versus volume relation during drying

Particle size is not that useful for fine grained soils

Figure 4 Moisture content versus volume relation during drying

- SL Shrinkage Limit
- PL Plastic Limit
- LL Liquid limit

SL - Shrinkage LimitPL - Plastic LimitLL - Liquid limit

Moisture content = $\frac{\text{mass of water}}{\text{mass of solids}}$

SL - Shrinkage LimitPL - Plastic LimitLL - Liquid limit

Moisture content = $\frac{\text{mass of water}}{\text{mass of solids}}$

Plasticity Index = LL - PL = PI or I_p

SL - Shrinkage LimitPL - Plastic LimitLL - Liquid limit

Moisture content = $\frac{\text{mass of water}}{\text{mass of solids}}$

Plasticity Index = LL - PL = PI or I_p

Liquidity Index = $(m - PL)/I_p = LI$

LIQUID LIMIT - ATTERBERG'S LIMITS

Liquid Limit is

the water content at which 25 blows cause the groove to close.

FIGURE 2.11 Flow curve for liquid limit determination of a clayey silt

PLASTIC & SHRINKAGE LIMIT <u>Plastic Limit</u> is water content at which 3 mm diameter roller of soil starts crumbling

<u>Shrinkage Limit</u> is water content beyond reduction which does not cause volume decrease

– Plastic Limit (PL or W_P)

(سنگدانه ها)Aggregates

clay	silt		sand gravel		cobble	boulder		
0.0	0.006 (02mm).02 0.(6 06mm	20 20	6 mm	20 60)mm 20	Omm
Vei	ry coarse soils	BOUI COBI	LDERS BLES			> 20 60 -	00 mm - 200 mm	
(Coarse soils	G	G RAVEL S SAND	coars mediu fine coars mediu fine	e um e um	20 - 6 - 2 2 - 0 0.6 0.2 0.00	- 60 mm 20 mm 6 mm - 2.0 mm - 0.6 mm 5 - 0.2 mr	n
	Fine soils		M SILT	coars mediu fine	e um	0.02 0.00 0.00	2 - 0.06 m 06 - 0.02 m 02 - 0.006	nm mm 5 mm

CLASSIFICATION IS:1498 - 1970

Sieve analysis (Grading)

Sieve Analysis Apparatus: A) Sieve aperture sizes, B) Dry oven, C) Sieve shaker, D) Mortar & Tray, E) Rubber pestle, [F) Balance

Sieve analysis example

The results of a dry-sieving test are given below, together with the grading analysis and grading curve. Note carefully how the tabulated results are set out and calculated. The grading curve has been plotted on special semi-logarithmic paper; you can also do this analysis using a spreadsheet.

Sieve mesh	Mass	Percentage	Percentage
size (mm)	retained (g)	retained	finer (passing)
14.0	0	0	100.0
10.0	3.5	1.2	98.8
6.3	7.6	2.6	86.2
5.0	7.0	2.4	93.8
3.35	14.3	4.9	88.9
2.0	21.1	7.2	81.7
1.18	56.7	19.4	62.3
0.600	73.4	25.1	37.2
0.425	22.2	7.6	29.6
0.300	26.9	9.2	20.4
0.212	18.4	6.3	14.1
0.150	15.2	5.2	8.9
0.063	17.5	6.0	2.9
Pan	8.5	2.9	
TOTAL	292.3	100.0	

By Method 1:

Sieve Sizes (mm)	Mass Retained (g)	Percentage Retained (g)	Percentage Passing (%)		
1.18	0	0	100		
0.600	20	(20/500)x100 = 4	100-4 = 96		
0.300	170	(170/500)x100 = 34	96-34 = 62		
0.150	235	(235/500)x100 = 47	62-47 = 15		
0.063	71	(71/500)x100 = 14.2	15-14.2 = 0.8		
Pan	3.5	Check: (3.5/500)x100 = 0.7 %			
By Method 2:					
Sieve Sizes	Mass Retained	Cumulative Mass	Percentage Passing		
(mm)	(g)	Passing (g)	(%)		
1.18	0	500-0 = 500	100		
0.600	20	500-20 = 480	(480/500)x100 = 96		
0.300	170	480-170 = 310	(310/500)x100 = 62		
0.150	235	310-235 = 75	(75/500)x100 = 15		
0.063	71	75-71 = 4	(4/500)x100 = 0.8		
Pan	3.5	4-3.5 = 0.5	(0.5/500)x100 = 0.1		

Calculation Formula:

Weight of dried soil sample (initial sample mass), $W_{total} = 500 \text{ g}$

Percentage Retained = (Mass Retained / Wtotal) x 100 %

Sieve Opening	Mass of Soil	Percent of Mass	Cumulative Percent	Percent Finer, 100
(mm)	Retained, M _n	Retained, Rn	Retained, $\sum R_n$	$-\sum R_{n}(\%)$
4.75	154	(154/822)x100 = 18.7	18.7	100-18.7 = 81.3
2.36	72	(72/822)x100 = 8.7	18.7+8.7 = 27.4	100-27.4 = 72.6
1.18	72	(72/822)x100 = 8.7	27.4+8.7 = 36.1	100-36.1 = 63.9
0.60	141	(141/822)x100 = 17.1	36.1+71.1 = 53.2	100-53.2 = 46.8
0.425	85	(85/822)x100 = 10.3	53.2+10.3 = 63.5	100-63.5 = 36.5
0.30	80	(80/822)x100 = 9.7	63.5+9.7 = 73.2	100-73.2 = 26.8
0.15	149	(149/822)x100 = 18.1	73.2+18.1 = 91.3	100-91.3 = 8.7
0.075	45	(45/822)x100 = 5.5	91.3+5.5 = 96.8	100-96.8 = 3.2
Pan	24	(24/822)x100 = 2.9	96.8+2.9 = 99.7	-

Calculation Formula: Weight of dried soil sample, W_{total} = 824 g

Percent of Mass Retained, R_n = (M_n / W₁) x 100 %

Total Mass of Soil Retained, $\sum M_n = W_1 = (154+72+72+141+85+80+149+45+24) = 822 \text{ g}$

Mass Loss during Sieve Analysis; $[(W_{total} - W_1) / W_{total}] \ge 100 \% = [(824 - 822) / 824 = 0.2 \%$ Note: OK if < 2 %

The Graphs

W Well graded

To determine if W or P, calculate C_u and C_c

$$C_{u} = \frac{D_{60}}{D_{10}}$$
$$C_{c} = \frac{D_{30}^{2}}{(D_{60} \times D_{10})}$$

To determine W or P, calculate C_u and C_c

To determine W or P, calculate C_u and C_c

To determine W or P, calculate C_u and C_c

To determine W or P, calculate C_u and C_c

$$C_{u} = \frac{D_{60}}{D_{10}}$$
$$C_{c} = \frac{D_{30}^{2}}{(D_{60} \times D_{10})}$$

If prefix is G then suffix is W if $C_u > 4$ and C_c is between 1 and 3 otherwise use P

If prefix is S then suffix is W if $C_u > 6$ and C_c is between 1 and 3 otherwise use P

• % fines (% finer than 75 μ m) = 11% - Dual symbols required

- % fines (% finer than 75 μ m) = 11% Dual symbols required
- $D_{10} = 0.06 \text{ mm}, D_{30} = 0.25 \text{ mm}, D_{60} = 0.75 \text{ mm}$

Compaction

Purposes of Compaction

- Compaction is the application of energy to soil to reduce the void ratio
 - This is usually required for fill materials, and is sometimes used for natural soils
- Compaction reduces settlements under working loads
- Compaction increases the soil strength
- Compaction makes water flow through soil more difficult
- Compaction can prevent liquefaction during earthquakes

Factors affecting Compaction

- Water content of soil
- The type of soil being compacted
- The amount of compactive energy used

Laboratory Compaction tests

Laboratory Compaction tests

Mould volume	H am m er m ass	H am m er drop

• The object of compaction is to reduce the void ratio, or to increase the dry unit weight.

• The object of compaction is to reduce the void ratio, or to increase the dry unit weight.

• In a compaction test bulk unit weight and moisture content are measured. The dry unit weight may be determined as follows $\gamma_{bulk} = \frac{W}{V} = \frac{Wt \, of \, Solids + Wt \, of \, Water}{Total \, Volume} = \frac{W_s + W_w}{V}$

• The object of compaction is to reduce the void ratio, or to increase the dry unit weight.

• In a compaction test bulk unit weight and moisture content are measured. The dry unit weight may be determined as follows $\gamma_{bulk} = \frac{W}{V} = \frac{Wt \, of \, Solids + Wt \, of \, Water}{Total Volume} = \frac{W_s + W_w}{V}$

 $\gamma_{\text{bulk}} = \frac{\left(1 + \frac{W_{w}}{W_{s}}\right)W_{s}}{V}$

• The object of compaction is to reduce the void ratio, or to increase the dry unit weight.

• In a compaction test bulk unit weight and moisture content are measured. The dry unit weight may be determined as follows $\gamma_{bulk} = \frac{W}{V} = \frac{Wt \, of \, Solids + Wt \, of \, Water}{Total Volume} = \frac{W_s + W_w}{V}$

From the graph we determine the optimum moisture content, m_{opt} that gives the maximum dry unit weight, $(\gamma_{dry})_{max}$.

$$A(\%) = \frac{V_a}{V} \times 100$$

$$A (\%) = \frac{V_a}{V} \times 100$$
$$1 - \frac{A}{100} = \frac{V_w + V_s}{V}$$

$$A(\%) = \frac{V_a}{V} \times 100$$
$$1 - \frac{A}{100} = \frac{V_w + V_s}{V}$$

$$\gamma_{dry} = \frac{\gamma_{bulk}}{1+m} = \frac{W_s + W_w}{V(1+m)} = \frac{(W_s + W_w)(1-\frac{\pi}{100})}{(V_s + V_w)(1+m)}$$

$$A(\%) = \frac{V_a}{V} \times 100$$
$$1 - \frac{A}{100} = \frac{V_w + V_s}{V}$$

$$\gamma_{dry} = \frac{\gamma_{bulk}}{1+m} = \frac{W_s + W_w}{V(1+m)} = \frac{(W_s + W_w)(1-\frac{\pi}{100})}{(V_s + V_w)(1+m)}$$

$$V_{s} = \frac{W_{s}}{G_{s} \gamma_{w}} \qquad V_{w} = \frac{W_{w}}{\gamma_{w}} = \frac{mW_{s}}{\gamma_{w}}$$

$$A(\%) = \frac{V_a}{V} \times 100$$
$$1 - \frac{A}{100} = \frac{V_w + V_s}{V}$$

$$\gamma_{dry} = \frac{\gamma_{bulk}}{1+m} = \frac{W_s + W_w}{V(1+m)} = \frac{(W_s + W_w)(1-\frac{\pi}{100})}{(V_s + V_w)(1+m)}$$

$$V_{s} = \frac{W_{s}}{G_{s} \gamma_{w}} \qquad V_{w} = \frac{W_{w}}{\gamma_{w}} = \frac{mW_{s}}{\gamma_{w}}$$
$$\gamma_{dry} = (1 - \frac{A}{100}) \left[\frac{G_{s} \gamma_{w}}{G_{s} m + 1}\right]$$

If the soil is saturated (A = 0) and

$$\gamma_{dry} = \left[\frac{G_s \gamma_w}{G_s m + 1} \right]$$

Moisture content

Effects of water content

- Adding water at low moisture contents makes it easier for particles to move during compaction, and attain a lower void ratio. As a result increasing moisture content is associated with increasing dry unit weight.
- As moisture content increases, the air content decreases and the soil approaches the zero-air-voids line.
- The soil reaches a maximum dry unit weight at the optimum moisture content
- Because of the shape of the no-air-voids line further increases in moisture content have to result in a reduction in dry unit weight.

Effects of varying compactive effort

Moisture content

- Increasing energy results in an increased maximum dry unit weight at a lower optimum moisture content.
- There is no unique curve. The compaction curve depends on the energy applied.
- Use of more energy beyond m_{opt} has little effect.

Effects of soil type

		Typical Values	
		$(\gamma_{dry})_{max} (kN/m^3)$	m _{opt} (%)
Well graded sand	SW	22	7
Sandy clay	SC	19	12
Poorly graded sand	SP	18	15
Low plasticity clay	CL	18	15
Non plastic silt	ML	17	17
High plasticity clay	СН	15	25

- G_s is constant, therefore increasing maximum dry unit weight is associated with decreasing optimum moisture contents
- Do not use typical values for design as soil is highly.

Field specifications

During construction of soil structures (dams, roads) there is usually a requirement to achieve a specified dry unit weight.

Moisture content

(a) > 95% of (modified) maximum dry unit weight

Field specifications

During construction of soil structures (dams, roads) there is usually a requirement to achieve a specified dry unit weight.

Moisture content

(a) > 95% of (modified) maximum dry unit weight

Moisture content

(b) >95% of (modified) maximum dry unit weight and m within 2% of m_{opt}

Compaction equipment

Equipment	Most suitable soils	
Smooth wheeled rollers, static or	Well graded sand-gravel, crushed rock,	
vibrating	asphalt	
Rubber tired rollers	Coarse grained soils with some fines	
Grid rollers	Weathered rock, well graded coarse	
	soils	
Sheepsfoot rollers, static	Fine grained soils with $> 20\%$ fines	
Sheepsfoot rollers, vibratory	as above, but also sand-gravel mixes	
Vibrating plates	Coarse soils, 4 to 8% fines	
	All types	

Also drop weights, vibratory piles

For (cohesionless)soils without fines alternative specifications are often used. These are based on achieving a certain relative density.

e = current void ratio

e_{max} = maximum void ratio in a standard test

e_{min} = minimum void ratio in a standard test

For (cohesionless)soils without fines alternative specifications are often used. These are based on achieving a certain relative density.

$$I_d = \frac{e_{\max} - e}{e_{\max} - e_{\min}}$$

e = current void ratio

 e_{max} = maximum void ratio in a standard test e_{min} = minimum void ratio in a standard test

 $I_d = 1$ when $e = e_{min}$ and soil is at its densest state $I_d = 0$ when $e = e_{max}$ and soil is at its loosest state

We can write I_d in terms of γ_{dry} because we have

 $e = \frac{G_s \gamma_w}{\gamma_{dry}} - 1$

We can write I_d in terms of γ_{dry} because we have

 $e = \frac{G_{s} \gamma_{w}}{\gamma_{dry}} - 1$ $I_{d} = \frac{\gamma_{dry_{\max}} (\gamma_{dry} - \gamma_{dry_{\min}})}{\gamma_{dry} (\gamma_{dry_{\max}} - \gamma_{dry_{\min}})}$

We can write I_d in terms of γ_{dry} because we have

$$e = \frac{G_{s} \gamma_{w}}{\gamma_{dry}} - 1$$

$$I_{d} = \frac{\gamma_{dry} (\gamma_{dry} - \gamma_{dry_{\min}})}{\gamma_{dry} (\gamma_{dry_{\max}} - \gamma_{dry_{\min}})}$$

The terms loose, medium and dense are used, where typically

loose $0 < I_d < 0.333$ medium $0.333 < I_d < 0.667$ dense $0.667 < I_d < 1$

We can write I_d in terms of γ_{dry} because we have

$$e = \frac{G_{s} \gamma_{w}}{\gamma_{dry}} - 1$$

$$I_{d} = \frac{\gamma_{dry} (\gamma_{dry} - \gamma_{dry_{\min}})}{\gamma_{dry} (\gamma_{dry_{\max}} - \gamma_{dry_{\min}})}$$

The terms loose, medium and dense are used, where typically

loose $0 < I_d < 0.333$ medium $0.333 < I_d < 0.667$ dense $0.667 < I_d < 1$

The maximum and minimum dry unit weights vary significantly from soil to soil, and therefore you cannot determine dry unit weight from I_d

Measurement of soil properties

The oedometer apparatus

Relation between axial and volume strain

(a) Before Deformation (b) After Deformation Volume strain $\varepsilon_v = -\frac{\Delta V}{V_0}$ (1)

(a) $V = V_o = \Delta x \Delta y \Delta z$ (b) $V = [\Delta x (1 - \varepsilon_{xx})] \times [\Delta y (1 - \varepsilon_{yy})] \times [\Delta z (1 - \varepsilon_{zz})]$ (2a)

Relation between axial and volume strain

$$\varepsilon_{v} = -\left(\frac{V - V_{0}}{V_{0}}\right)$$

(2b)

Relation between volume strain and voids ratio

$$V_{s}(e_{0} + \Delta e)$$

 V_{s}

(a) Before Deformation

(b) After Deformation

$$V_0 = V_s (1 + e_0)$$

 $V = V_s (1 + e_0 + \Delta e_0)$

Voids ratio change for soil moving from OC to NC

 $\log_{10}(\sigma'_{1}) \quad \log_{10}(\sigma'_{2}) \quad \log_{10}(\sigma'_{3})$

The initial value of $\sigma'_{pc} = \sigma'_2$

The final value of $\sigma'_{pc} = \sigma'_3$

Unconfined compression test on clay (undrained, uniaxial)

ELE catalogue

Triaxial Test on Soil Sample in Laboratory

Triaxial test on soil

and the second second

Mohr Circles

To relate strengths from different tests we need to use some results from the Mohr circle transformation of stress.

Mohr-Coulomb failure criterion

The Mohr-Coulomb failure locus is tangent to the Mohr circles at failure

Mohr-Coulomb failure criterion

The limiting shear stress (soil strength) is given by

 $\tau = c + \sigma_n \tan \phi$

where c = cohesion (apparent)

 $\phi =$ friction angle

Tests to measure soil strength

1. Shear Box Test

Shear box test

Usually only relatively slow drained tests are performed in shear box apparatus. For clays rate of shearing must be chosen to prevent excess pore pressures building up. For sands and gravels tests can be performed quickly

 Tests on sands and gravels are usually performed dry. Water does not significantly affect the (drained) strength.

If there are no excess pore pressures and as the pore pressure is approximately zero the total and effective stresses will be identical.

The failure stresses thus define an effective stress failure envelope from which the effective (drained) strength parameters c', \$\u00f6' can be determined.