


Nano Mn-Ca oxide surrounded by
polypeptides as a biomimetic catalyst for
water-splitting systems
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Hydrogen Fuel

Significant Properties of Hydrogen:

Transportable
High efficient
Safe

Hydrogen Production:

Catalytic conversion of light hydrocarbons
Thermal decomposition of water

Photo decomposition of water

Water electrolysis

A. Ursu’a et.al, Proceedings of the IEEE, 100 (2012) 410-426



Water electrolysis
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D. Nocera et.al, Progress in Inorganic Chemistry, 57 (2012) 505-560



Water electrolysis
Electrochemistry

It is caused first by the resistance of several cell
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Using Catalyst Activation overvoltage, is due to electrode kinetics. The
charge transfer between the chemical species and the
electrodes demands energy.

[ Decrease of anodic overvoltage:

D. Nocera et.al, Progress in Inorganic Chemistry, 57 (2012) 505-560 8
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Water electrolysis
Main drawbacks

1. Need to high overvoltage for water oxidation half-reaction.

2. Interfere of other ions like chloride.

Photosynthesis




Photosynthesis
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M. M. Najafpour, et al., Plant Physiology and Biochemistry 81 (2014) 3-15



Photosynthesis
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Photosynthesis
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Photosystem Il (PSII)
Mn4Ca0 Cluster
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Shen et al. Nature, 473 (2011) 55-60.



Artificial water-oxidizing catalysts

Ru, NI, Pt, Au, Ag, Pd, Re, Co, Fe, Ir, Cu,

Mn

Mn Oxide Complex

M. M. Najafpour et al. Biochimica et Biophysica Acta (BBA)Bioenergetics, 1847 (2015) 294-306
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Experimental Design for Evaluating Water Oxidation
Catalysts

Chemical Oxidants: Ceric ammonium nitrate, sodium periodate,
Tris(bipyridine)ruthenium(Il), potassium peroxymonosulfate

Photochemical water Oxidation

Electrochemical water Oxidation
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Our work




Photosystem Il (PSII)

Shen et al., Nature, 473 (2011) 55-60

Roles for the residues that come in
contact directly with the Mn-Ca cluster
include regulation of charges and
electrochemistry of the Mn-Ca cluster,
and help in coordinating water
molecules at appropriate metal sites
and stability of the cluster.
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Important parameters for synthesis new manganese
oxide-based catalysts for water oxidation

(i) A mean oxidation state of Mn between +3 and +4.

(i) A layered-oxide structure of low order with extensive di-p-oxo bridge between Mn
ions.

(iii) Presence of redox- inactive cations that are linked to Mn ions by p-oxo bridges.

Mn(11,IV) >Mn(lll) >Mn(IV), Mn(ll) and Mn(l1,111)

H. Dau et al., Energy Environ. Sci., 4 (2011) 2400-2408
H. Dau et al., Energy Environ. Sci., 5 (2012) 7081-7089 18
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Synthesis of new manganese-based catalyst in protein
environment

Direct:

Indirect:
Carboxylate D1-Asp61
Imidazole D1-His33

CP43-Arg357

Hydrophilic (white) and hydrophobic (yellow) residues around Mn-Ca cluster.

Role: Stability of Mn cluster, proton, water or oxygen transfer.
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Layered MnCaO, surrounded by engineered poly peptide
matrix

Glu-Glu-Glu-Glu-Glu-Glu-Glu-His-Val-Val-Val-Val-Val-Val-Val-Val (G,HVy).

» The hydrophobic property of valine helps to peptide insolubility in water that is necessary
to use the compound as heterogeneous catalyst.

> This bulky groups cause inhibit from leaking from the surface of oxide to solution.

> The protein is stable in the presence of potential needs for water oxidation.

» The carboxylate and imidazole groups stabilize Mn(lll).
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Synthesis of MnCaOx-G,HV,

Glu-Glu-Glu-Glu-Glu-Glu-Glu-His-Val-Val-Val-Val-Val-Val-Val-Val (G;HVy).

To the engineered polypeptide (25 mg) in water (10 mL), Mn(OAc),.4H,0 (6 mg) and
Ca(NO;), (3 mg)were added and stirred for 1 h. Then, a solution of KMnO, (1.8 mg) in
water (2 mL) containing Ca(OH), (pH = 9) was added at 4 °C and stirred for 30 minutes.
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Results



Characterization
SEM and '_I'EM
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SEM (a,b) and TEM (c,d) images of MnCaOx-G,HVj. 55




Cyclic Voltammetry

(a)

I/pA

(b) 400
250 ]
350 4
200 4 300 4
250 4
150 4
200 4
100 150-‘
;1 ]
= 100
50 4 |
50 4
04 0-
50 -50 4
T v T ’ T v T \ T v -100 T T T T T T T T T T
-05 0.0 05 1.0 1.5 20 -0.5 0.0 0.5 1.0 15 20
E/V vs. Ag|AgCl E/V vs. Ag|AgCl

Cyclic voltammograms (CVs) of (a) Pt/G,HVg/Nafion , (b) Pt/MnCaO,-G,HVg/Nafion in LiCIO, solution (0.1
M), pH = 6.3 at a scan rate of 100 mV s,
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Cyclic Voltammetry
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Chronoamperometry
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Oxygen evolution by Pt/MnCaO,-G,HV¢/Nafion at potential of 0.75V and
FTO/MnCaO,-G,HV/Nafion at 0.7V (vs. Ag/AgCl) in LiCIO, solution (0.1 M), pH
=6.3.



Conclusion
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» The layered manganese oxides are more efficient catalysts than other structures.

> Proper choice of matrix environment around manganese oxides leads to decrease
required overpotential for water oxidation reaction.

> The groups which stabilize Mn(lll), can reduce the potential of water oxidation.
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Thank you for your attention



