

Nano Mn-Ca oxide surrounded by polypeptides as a biomimetic catalyst for water-splitting systems

Introduction

F GLUBAL WARWING CONTINUES THE

Total amount of energy used in the world

Fossil Fuel

Energy Crisis

Climate Change

yesterday

today

CO₂ Production

Global Warming

Hydrogen Fuel

Significant Properties of Hydrogen:

Transportable High efficient Safe

Hydrogen Production:

Catalytic conversion of light hydrocarbons Thermal decomposition of water Photo decomposition of water Water electrolysis

Water electrolysis

D. Nocera et.al, Progress in Inorganic Chemistry, 57 (2012) 505-560

Water electrolysis Electrochemistry

1.5-1.8 V

It is caused first by the resistance of several cell $1.23 \vee$ elements centration every lagrow. conservation and diffusion).

 $\eta_{
m c}$

 η_a

$$V_{
m cell} = V_{
m rev} + V_{
m ohm} + V_{
m act} + V_{
m con}$$

Decrease of anodic overvoltage: Using Catalyst

Activation overvoltage, is due to electrode kinetics. The charge transfer between the chemical species and the electrodes demands energy.

D. Nocera et.al, Progress in Inorganic Chemistry, 57 (2012) 505-560 A. Ursu'a et.al, Proceedings of the IEEE, 100 (2012) 410-426

Water electrolysis Main drawbacks

1. Need to high overvoltage for water oxidation half-reaction.

2. Interfere of other ions like chloride.

Photosynthesis

M. M. Najafpour, et al., Plant Physiology and Biochemistry 81 (2014) 3-15

Photosynthesis

Photosynthesis

Photosystem I, II

Photosystem II (PSII) Mn₄CaO₅ Cluster

Synthesis of catalysts inspired by water-oxidizing complex in PSII

DI

D2

0.54 nm

3

Shen et al. Nature, 473 (2011) 55-60.

CP43

Ca-2

Artificial water-oxidizing catalysts

Ru, Ni, Pt, Au, Ag, Pd, Re, Co, Fe, Ir, Cu, Mn Mn Oxide Mn Complex

Experimental Design for Evaluating Water Oxidation Catalysts

Chemical Oxidants: Ceric ammonium nitrate, sodium periodate, Tris(bipyridine)ruthenium(II), potassium peroxymonosulfate

Photochemical water Oxidation

Electrochemical water Oxidation

M. D. Kärkäs et al. Chem. Rev, 114 (2014) 11863-12001

Our work

Photosystem II (PSII)

Roles for the residues that come in contact directly with the Mn-Ca cluster include regulation of charges and electrochemistry of the Mn-Ca cluster, and help in coordinating water molecules at appropriate metal sites and stability of the cluster.

Important parameters for synthesis new manganese oxide-based catalysts for water oxidation

(i) A mean oxidation state of Mn between +3 and +4.

(ii) A layered-oxide structure of low order with extensive di-µ-oxo bridge between Mn ions.

(iii) Presence of redox- inactive cations that are linked to Mn ions by µ-oxo bridges.

Mn(III,IV) >Mn(III) >Mn(IV), Mn(II) and Mn(II,III)

H. Dau et al., Energy Environ. Sci., 4 (2011) 2400-2408
H. Dau et al., Energy Environ. Sci., 5 (2012) 7081-7089
M. M. Najafpour et al., Biochimica et Biophysica Acta (BBA)Bioenergetics, 1847 (2015) 294-306

Synthesis of new manganese-based catalyst in protein environment

Direct: Carboxylate Imidazole

Indirect: D1-Asp61 D1-His33 CP43-Arg357

Hydrophilic (white) and hydrophobic (yellow) residues around Mn-Ca cluster.

Role: Stability of Mn cluster, proton, water or oxygen transfer.

Layered MnCaO_x surrounded by engineered poly peptide matrix

- > The hydrophobic property of valine helps to peptide insolubility in water that is necessary to use the compound as heterogeneous catalyst.
- > This bulky groups cause inhibit from leaking from the surface of oxide to solution.
- > The protein is stable in the presence of potential needs for water oxidation.
- The carboxylate and imidazole groups stabilize Mn(III).

Synthesis of MnCaOx-G₇HV₈

To the engineered polypeptide (25 mg) in water (10 mL), $Mn(OAc)_2.4H_2O$ (6 mg) and $Ca(NO_3)_2$ (3 mg) were added and stirred for 1 h. Then, a solution of $KMnO_4$ (1.8 mg) in water (2 mL) containing $Ca(OH)_2$ (pH = 9) was added at 4 °C and stirred for 30 minutes.

Results

Characterization SEM and TEM

SEM (a,b) and TEM (c,d) images of $MnCaOx-G_7HV_8$.

Cyclic Voltammetry

Cyclic voltammograms (CVs) of (a) $Pt/G_7HV_8/Nafion$, (b) $Pt/MnCaO_x-G_7HV_8/Nafion$ in $LiClO_4$ solution (0.1 M), pH = 6.3 at a scan rate of 100 mV s⁻¹.

Cyclic Voltammetry

Cyclic voltammograms (CVs) of $Pt/G_7HV_8/Nafion$, Pt/MnCaO_x/Nafion, Pt/MnCaO_x-G₇HV₈/Nafion in LiClO₄ solution (0.1 M), pH = 6.3 at a scan rate of 100 mV s⁻¹. The arrow represents the oxidation of Mn(III) to Mn(IV) oxidation.

Chronoamperometry

Oxygen evolution by Pt/MnCaO_x– G_7HV_8 /Nafion at potential of 0.75V and FTO/MnCaO_x– G_7HV_8 /Nafion at 0.7V (vs. Ag/AgCl) in LiClO₄ solution (0.1 M), pH = 6.3.

Conclusion

- > The layered manganese oxides are more efficient catalysts than other structures.
- Proper choice of matrix environment around manganese oxides leads to decrease required overpotential for water oxidation reaction.
- > The groups which stabilize Mn(III), can reduce the potential of water oxidation.

Thank you for your attention