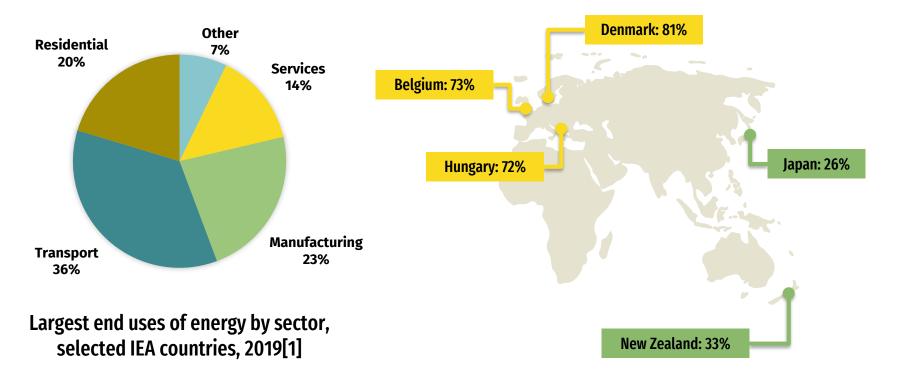
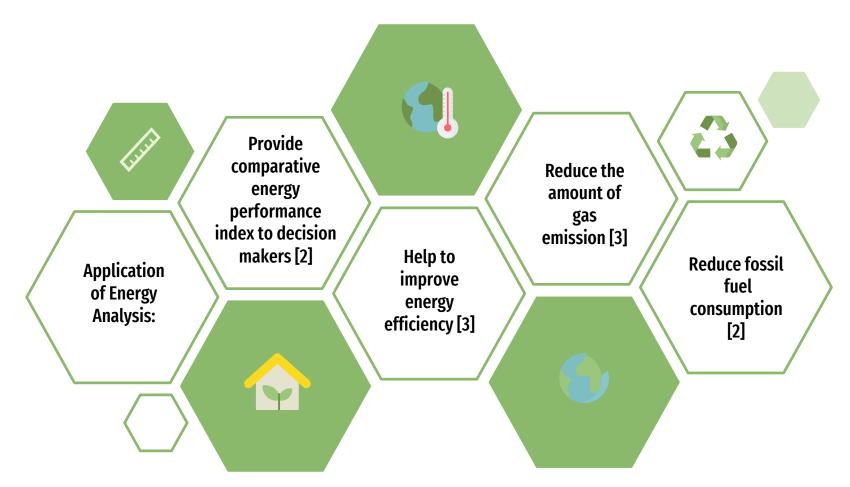
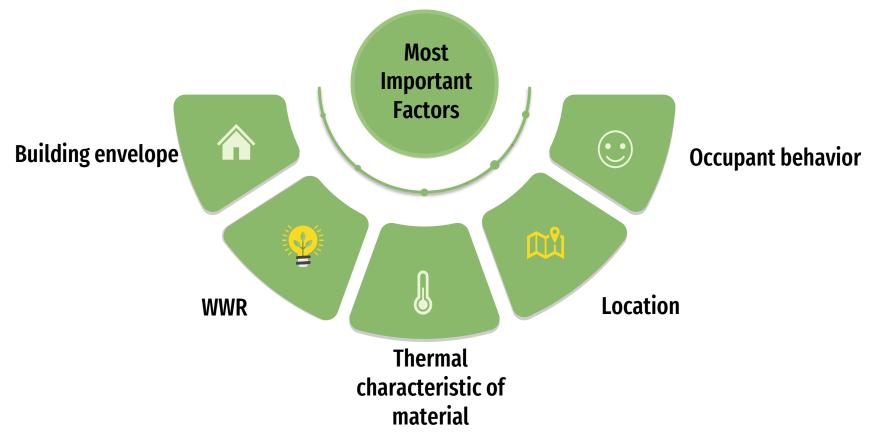


Application of Machine Learning and BIM in Energy Analysis

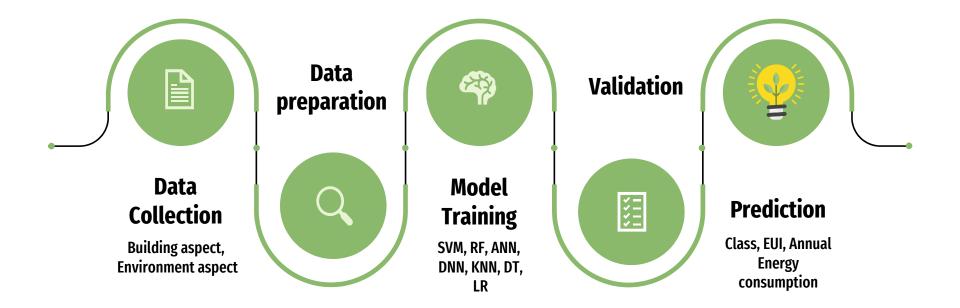
Advisor: Dr. Sadeghi Faezeh Fakharan

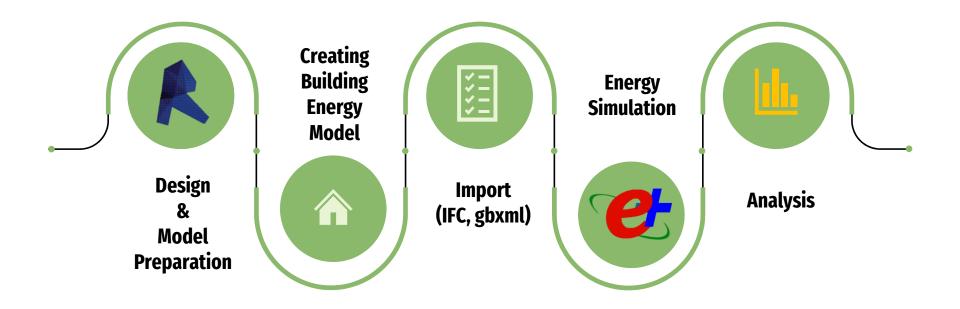



1.Introduction2.Machine Learning in Energy Analysis3.BIM in Energy Analysis4.Conclusion5.References

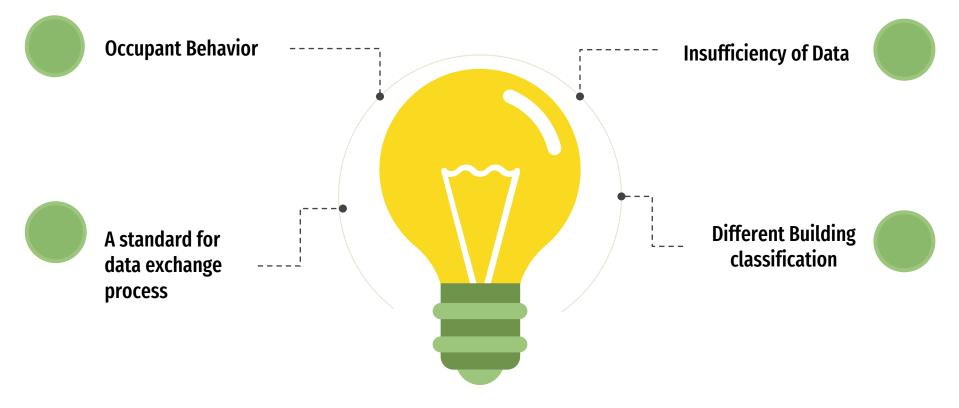


Introduction


Space heating Shares of residential energy consumption [1]



Machine Learning in Energy Analysis


Reference	Data	ML									
		RF	SVM	KNN	ANN	DNN	DT	LR	Building	Purpose	REF
Razak Olu- Ajayi et al (2022)	Real	✓	V	✓	V	V	V	V	Residential	Energy Consumption	[4]
Yang Liu et al (2021)	Simulation	✓	✓		√				Non- residential	Energy Efficiency	[5]
Jun Ma, Jack C.P. Cheng (2016)	Real	✓						V	Residential	Energy Efficiency	[6]
Minglei Shaoa et al (2020)	Real		V						Non- residential	Energy Consumption/ efficiency	[7]

BIM in Energy Analysis

	BIM			I						
Reference		Energy Plus	GBS	Insight	Open Studio	IES VE	First Rate5	Building	Purpose	REF
Mikhail Demianenko et al (2021)	Revit		~					Residential	Energy consumption	[8]
Ehsan Kamel, Ali M. Memari (2018)	Revit	✓			~			Residential	Energy Efficiency	[9]
Quddus Tushar et al (2021)	Revit						✓	Residential	Energy Efficiency	[10]
Georgios Gourlis, Iva Kovacic (2017)	Revit	~						Non- residential	energy consumption/ efficiency	[11]

Conclusion

References:

IEA. (2021). Energy Efficiency Indicators. Available: <u>https://www.iea.org/reports/energy-efficiency-indicators-overview</u>
 S. Seyedzadeh, F. P. Rahimian, I. Glesk, and M. Roper, "Machine learning for estimation of building energy consumption and performance: a review," Visualization in Engineering, vol. 6, no. 1, pp. 1-20, 2018.

[3] Y.-T. Chen, E. Piedad Jr, and C.-C. Kuo, "Energy consumption load forecasting using a level-based random forest classifier," *Symmetry*, vol. 11, no. 8, p. 956, 2019.

[4] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, "Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques," *Journal of Building Engineering*, vol. 45, p. 103406, 2022
[5] Y. Liu, H. Chen, L. Zhang, and Z. Feng, "Enhancing building energy efficiency using a random forest model: A hybrid prediction approach," *Energy Reports*, vol. 7, pp. 5003-5012, 2021.

[6] J. Ma and J. C. Cheng, "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," *Applied energy*, vol. 183, pp. 193-201, 2016.

[7] M. Shao, X. Wang, Z. Bu, X. Chen, and Y. Wang, "Prediction of energy consumption in hotel buildings via support vector machines ",*Sustainable Cities and Society*, vol. 57, p. 102128, 2020.

[8] M. Demianenko and C. I. De Gaetani, "A Procedure for Automating Energy Analyses in the BIM Context Exploiting Artificial Neural Networks and Transfer Learning Technique," *Energies*, vol. 14, no. 10, p. 2956, 2021.

[9] E. Kamel and A. M. Memari, "Automated building energy modeling and assessment tool (ABEMAT)," *Energy*, vol. 147, pp. 15-24, 2018.

[10] Q. Tushar, M. A. Bhuiyan, G. Zhang, and T. Maqsood, "An integrated approach of BIM-enabled LCA and energy simulation: The optimized solution towards sustainable development," *Journal of Cleaner Production*, vol. 289, p. 125622, 2021

[11] G. Gourlis and I. Kovacic, "Building Information Modelling for analysis of energy efficient industrial buildings–A case study," Renewable and Sustainable Energy Reviews, vol. 68, pp. 953-963, 2017.