
Chemometrics and Intelligent Laboratory Systems 222 (2022) 104510
Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

journal homepage: www.elsevier.com/locate/chemometrics
Application of the LAD-LASSO as a dimensional reduction technique in the
ANN-based QSAR study: Discovery of potent inhibitors using molecular
docking simulation

Zeinab Mozafari a,*, Mansour Arab Chamjangali a, Mohammad Arashi b, Nasser Goudarzi a

a Department of Chemistry, Shahrood University of Technology, Shahrood, Semnan, Iran
b Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Iran
A R T I C L E I N F O

Keywords:
LAD-LASSO
Artificial neural network
Molecular docking
Cancer
HIV
* Corresponding author. ; .
E-mail addresses: Zeinab.Mozafari@shahroodut.a

https://doi.org/10.1016/j.chemolab.2022.104510
Received 11 October 2021; Received in revised for
Available online 1 February 2022
0169-7439/© 2022 Elsevier B.V. All rights reserved
A B S T R A C T

In this study, the combination of the least absolute deviation-least absolute shrinkage and selection operator
(LAD-LASSO) was introduced as a new variable selection method for the artificial neural network (ANN)-based
quantitative structure-activity relationship (QSAR) studies. The biological activity of various chemical compounds
was predicted using an ANN-based QSAR model combined with the efficient LAD-LASSO variable selection
method. In this study, 3224 computed DRAGON descriptors were reduced to a smaller number using pre-
processing methods. The descriptors with the most significant relevance to biological activities were chosen using
the LAD-LASSO variable selection method. The selected descriptors were defined as ANN inputs and optimized
the designed models. The biological activity of the test set compounds was predicted using the optimum ANN
models. The coefficients of determination (R2) for the test data in the different datasets were equal to 0.87, 0.84,
and 0.87. Also, the MSE value of the test set is equal to 0.13, 0.07, and 0.11, respectively. The high R2 and low
MSE values demonstrate the good prediction ability of the constructed QSAR models. The applicability domain
(AD) and Y-randomization test also proved the efficiency of the developed models. Finally, The performance of
the QSAR model was evaluated by the identification of novel compounds with high potency. As a result, the weak
structure of the dataset was identified and modified using the effect of selected descriptors on the biological
activity, resulting in the establishment of new compounds with significant potency. The response value of the new
suggested compounds was predicted using the optimum ANN models. Receptor-ligand interactions were extracted
for all proposed compounds. The presence of different hydrophilic and hydrophobic interactions in the active site
of the respective receptor indicates the high potential of suggested chemical compounds.
1. Introduction

Quantifying the physicochemical properties of synthetic chemical
drugs and finding the relationships governing the measured quantities is
always a unique and evolving issue in computer-aided drug design
(CADD) [1]. Pharmaceutical chemists have been considering the use of
computational chemistry and molecular modeling to build effective
chemical compounds using computers in the last years [2,3]. The ad-
vantages of computational methods are reducing the synthesized chem-
ical compounds in finding the potent compounds, acceleration of
calculations and experiments with reliable prediction through the phar-
macological properties of the molecular structure, and reducing the use
of animal experiments and clinical trials [4]. Therefore, presenting a
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logical, quantitative structure-activity relationship (QSAR) model with
high prediction ability and interpretability has always been considered. A
high-performance QSAR model should demonstrate strong prediction
ability for novel chemical compounds with the least amount of physi-
cochemical parameters or descriptors. As a result, developing new and
efficient variable selection methods to reduce data dimension in this
study area is essential. Variable selection procedures improve the inter-
pretability of the produced model by eliminating unnecessary and
duplicate descriptors. In the last years, different variable selection
methods such as classical, penalized, and several other new approaches
such as genetic algorithms, particle swarm optimization, and ant colony
optimization have been used to select the most relevant descriptors in
QSAR studies [1,2,5–16]. Classical variable selection methods such as
il.com (Z. Mozafari).
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Table 1
LAD-LASSO selected descriptors and their meaning and the computed standardized beta values.

No Name Description Sub- Category βStd

Dataset A 1 Ms Electro-topological State Constitutional indices 0.65
2 Mor28p signal 28/weighted by polarizability 3D-MoRSE descriptors �0.51
3 MATS2m Moran autocorrelation of lag 2 weighted by mass 2D autocorrelations 0.38
4 B09NO Presence/absence of N � O at topological distance 9 2D binary fingerprints �0.37
5 nSO2 number of sulfites (thio-/dithio-) Functional group counts 0.27
6 F03OO Frequency of C � O at topological distance 3 2D frequency fingerprints �0.24
7 N069 Ar-NH2/X–NH2 Atom-centered fragments 0.22
8 Mor13u signal 13/unweighted 3D-MoRSE descriptors 0.19
9 Mor32 m signal 32/weighted by mass 3D-MoRSE descriptors 0.17
10 Mor04 m signal 04/weighted by mass 3D-MoRSE descriptors �0.14

Dataset B 1 nArCO number of ketones (aromatic) Functional group counts �0.65
2 AMW average molecular weight Constitutional indices 0.52
3 Mor21 m signal 21/weighted by mass 3D-MoRSE descriptors �0.42
4 GGI9 topological charge index of order 9 2D autocorrelations 0.39
5 nArX number of X on aromatic ring Functional group counts 0.35
6 R4m R autocorrelation of lag 4/weighted by mass GETAWAY descriptors �0.27
7 MATS2m Moran autocorrelation of lag 2 weighted by mass 2D autocorrelations 0.17
8 RDF135 m Radial Distribution Function - 135/weighted by mass RDF descriptors 0.16
9 CIC2 Complementary Information Content index (neighborhood symmetry of 2-order) Information indices 0.14
10 C001 CH3R/CH4 Atom-centered fragments 0.14
11 Mor29 m signal 29/weighted by mass 3D-MoRSE descriptors 0.10
12 RDF020 m Radial Distribution Function - 020/weighted by mass RDF descriptors �0.09
13 RDF105 m Radial Distribution Function - 105/weighted by mass RDF descriptors �0.08
14 RDF130 m Radial Distribution Function - 130/weighted by mass RDF descriptors 0.06

Dataset C 1 AMW average molecular weight Constitutional indices 0.61
2 RDF110 m Radial Distribution Function - 110/weighted by mass RDF descriptors 0.56
3 Mor12e signal 12/weighted by Sanderson electronegativity 3D-MoRSE descriptors �0.54
4 nCp number of terminal primary C(Sp3) Functional group counts 0.44
5 Mor29 m signal 29/weighted by mass 3D-MoRSE descriptors 0.33
6 F084 F attached to C1(Sp2) Atom-centered fragments 0.31
7 RDF130 m Radial Distribution Function - 130/weighted by mass RDF descriptors 0.15
8 nArOR number of ethers (aromatic) Functional group counts �0.13
9 RDF070 m Radial Distribution Function - 070/weighted by mass RDF descriptors �0.08
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forward selection, backward elimination, and stepwise regression
methods have been considered in QSAR studies [17–20]. Classical ap-
proaches are based on the least square (LS) method with well-known
limitations. The LS method fails to give significant results dealing with
high-dimensional data (a small number of samples and a large number of
variables). This deficiency is due to the high correlation between the
variables, multicollinearity, and rank deficiency of the design in the
linear predictor term.

“Several penalized regression methods have been developed, and
have a unique framework and benefits, such as the ridge regression
(Frank and Friedman 1993) [21], the least absolute shrinkage and se-
lection operator (LASSO; Tibshirani 1996) [22], the smoothly clipped
absolute deviation (SCAD; Fan and Li 2001) [23], or the adaptive LASSO
(Zou 2006) [24]. It is worth noting that these penalized regression
methods strongly connect to the LS approach. Many researchers have
recently worked on LS regression in conjunction with the LASSO. In both
“small p, large n" and “large p, large n,” LS-based LASSO produces a
variety of intriguing results in terms of variable selection, estimation, and
prediction properties in QSAR studies [25–29]. Although LS-based
LASSO has good efficiency as either variable selection or modeling
techniques in the QSAR studies.“

“In the context of variable selection, LS-based LASSO has drawbacks
such as low stability and sparsity and high bias in estimating large co-
efficients. Also, it is well known that outliers can cause severe issues for
LS-based methods, such as LASSO, because of their sensitivity to outliers
in finite samples. As a result, in the presence of outliers, a robust criterion
should be used instead of the LS one. Accordingly, Wang and colleagues
introduced a LAD criterion coupled with the L1 norm penalty function,
which may choose relevant variables while compensating for vertical
outlier observations [30]. The LAD approach is robust against
heavy-tailed errors and severe outliers. Adding the L1 norm penalty
function to the LAD estimator can obtain a spars model (LAD-LASSO)
with a low bias for robust analysis, select the variables, and estimate the
2

parameters simultaneously [15]. So applying such a robust method
causes better prediction against the LS-based methods [30,31]. Due to
the drawbacks of LASSO as an LS-based penalized method, LAD-LASSO
benefits from both inherent advantages of the LAD and LASSO at the
same time. So, following in the footsteps of our earlier research [32,33],
the robust LAD-LASSO was used as the new variable selection method in
the QSAR studies.” So, the LAD-LASSO variable selection method was
combined with the artificial neural network (ANN) modeling method to
predict the biological activity of numerous datasets containing a variety
of chemical structures. The ANN, as a powerful modeling method, can
predict the biological activity of similar external compounds by estab-
lishing a relationship between the selected independent variables of the
LAD-LASSO method and the dependent variable. The used training al-
gorithm of the ANN in this study is a Levenberg-Marquardt (LM) training
function. The LM algorithm is a hybrid of gradient descent and
Gauss-Newton that has been utilized in QSAR studies to generate
nonlinear ANN-based models. LM is the standard method that solves
nonlinear least-squares and seeks to find the least multivariate nonlinear
function. Therefore, the constructed ANN models of this study were
trained using the LM algorithm due to several intrinsic advantages.

This study tries to present QSAR models with acceptable prediction
ability and appropriate interpretability using an ANN model coupled
with the LAD-LASSO variable selection method. “To the best of our
knowledge, there is recently only one report on the combination of LAD
and penalized method in QSAR studies, where AlDabbagh and et al. used
a combination of LAD and bridge methods to predict the biological ac-
tivity of 108 influenza virus neuraminidase. Results of this study revealed
that the proposed LAD-bridge model exhibits superior predictability and
robustness compared to alternative penalized modeling approaches
[34].” So far, no research has been published on combining the
LAD-LASSO variable selection method with the ANN-based QSAR
modeling method. As a result, three datasets containing human immu-
nodeficiency virus (HIV) and cancer inhibitors were subjected to the



Fig. 1. The VIF values of the LAD-LASSO selected descriptors in different
datasets A, B, and C.
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LAD-LASSO approach, which is highly capable of variable selection. As
inputs to the ANN modeling method, selected variables at the specified
tuning parameter of λ were used. The ANN was trained using the LM
training function, and the biological responses of the external chemical
compounds were predicted after optimizing the ANN parameters. The
results indicate that the LAD-LASSO-ANN models can produce reliable
predictions across all studied datasets. In order to conduct a more thor-
ough investigation, numerous statistical procedures were used, including
applicability domain, Y-randomization, and the computation of different
statistical parameters. All of the evaluation techniques demonstrate that
the models effectively predict the biological activities of chemical com-
pounds. Finally, several new potent chemical compounds with appro-
priate predicted biological activity were suggested using the model
descriptors. Furthermore, the new compound-receptor interaction was
also investigated using a molecular docking study. Additionally, the
compounds are accepted in terms of drug-likeness rules [35–37],
bioavailability score, and also, due to the ease of synthetic accessibility
degree, the synthesis of compounds is easily possible.

2. | Theory

Consider the following multiple linear regression model:

yi ¼ x
0
iβ þ 2i i ¼ 1; &:; n 1

where xi ¼ ðxi1 ;…; xipÞ
0
is the ith p-dimensional vector of molecular

descriptors, and β ¼ ðβ1 ;…; βpÞ
0
is the vector of regression coefficients,

and 2i is the ith random error component with the median equal to 0. As
per the OLS technique for estimating the regression coefficients, one

minimized
Pn
i¼1

ðyi � x
0
iβÞ

2
with respect to β. However, in the presence of

outliers, the OLS estimates are sensitive, and instead, wemay use a robust
method such as the least absolute deviations (LAD) obtains as

bβLAD ¼ argmin
β2Rp

Xn

i¼1

��yi � x
0
iβ
�� 2

when there are insignificant variables in the data, we can select
important variables using automatic selectors such as LS-based LASSO,
assuming sparsity. The LASSO has the following form:

LASSO¼
Xn

i¼1

�
yi � x

0
iβ
�2 þ λ

Xp

j¼1

��βj�� 3

where λ > 0 is the tuning parameter. The larger the value of λ, the greater
shrinking and lower the number of regression coefficients; otherwise, the
smaller the value of λ, the greater the non-zero coefficients. Since LASSO
uses a unique λ value for shrinking all coefficients, the same adjustment
parameter is applied to all parameters, and the model suffers from bias.
Adding the L1 norm penalty function to the LAD estimator can obtain a
spars model with a low bias for robust analysis. In comparison to LAD,
LAD-LASSO can select the variables and estimate the parameters simul-
taneously [15]. It is given by

LAD� LASSO¼
Xn

i¼1

��yi � x
0
iβ
��þ λ

Xp

j¼1

��βj�� 4

The LAD-LASSO estimator can be considered as a Bayesian estimator
so that each regression coefficient βj has a normal prior distribution with

scale parameter nλj and so bλj ¼ 1
njβjj, which is estimated using the ordi-

nary LAD estimation technique. The LAD-LASSO can be obtained using
the “quantreg” package in R-program without complex computing
programming.



Table 2
The optimized parameters for the best constructed LAD-LASSO-ANN models for various datasets.

Dataset ANN Topology Transfer Function Training algorithm Epoch MSEvalidation MAEvalidation R2
validation

Dataset A 5-6-1 logsig LM 5 0.12 0.33 0.91
Dataset B 14-2-1 logsig LM 5 0.09 0.24 0.90
Dataset C 7-4-1 tansig LM 40 0.08 0.21 0.86

Fig. 2. The graph of predicted against to the actual response for all datasets (a) external set (b) LOO technique (c) Standardized residual graph for LOO.
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3. | Computational study

3.1. | Datasets

To evaluate the efficacy of the LAD-LASSO approach, three datasets
were examined, including 73 HIV inhibitors (dataset A) [38–42], 72
human colorectal carcinoma inhibitors (dataset B), and 70 human lung
cancer inhibitors (dataset C) [43–45]. The structural details and the
biological activities are given in Tables S1, S2, and S3 in the supple-
mentary material. EC50 is half the maximum effective concentration of
the studied compound and refers to the compound concentration to
4

achieve a 50% effect. IC50 is also a half-maximum inhibitory concen-
tration indicating the compound required to inhibit the biological pro-
cess. EC50 and IC50 values were converted to the p-function (pEC50 and
pIC50) and used as informative dependent variables.

3.2. | Draw and optimization

It is necessary to optimize the structure of the investigated com-
pounds in order to calculate accurate molecular descriptors with precise
values for the compounds under investigation. As a result, the two-
dimensional structures of all examined compounds were created in the



Table 3
Computed statistical factors for the best LAD-LASSO-LM-ANN models for the prediction of response values.

NO. Formula Dataset A Dataset B Dataset C Acceptable range

Test set LOO Test set LOO Test set LOO

5-6-1 LAD-LASSO-LM-ANN 14-2-1 LAD-LASSO-LM-ANN 7-4-1 LAD-LASSO-LM-ANN

1
MAE ¼

Pn
i¼1jyi � byij

n
0.29 0.36 0.23 0.30 0.28 0.29 <0.1 � RangeTrain

2
REPð%Þ ¼ 100

y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � byiÞ2

n

s
5.62 6.61 5.14 9.37 6.54 7.76

3
MSE ¼

Pn
i¼1ðyi � byiÞ2

n

0.13 0.20 0.07 0.24 0.11 0.15 –

4

MRE ¼
Pn

i¼1

����yi � byi
yi

����
n

� 100

5.24 5.92 4.42 6.84 5.89 5.93 –

5
R2 ¼

Pn
i¼1ðbyi � yÞ2Pn
i¼1ðyi � yÞ2

0.87 0.78 0.84 0.71 0.87 0.77 >0.6

6 R2
0 0.86 0.72 0.77 0.66 0.85 0.73 Close to R2

7
RelativeR2

0 ¼ ðR2 � R2
0Þ

R2

0.01 0.08 0.08 0.07 0.02 0.05 <0.3

8 R2
m ¼ R2 �½1�ðR2

0 � R2)] 0.78 0.59 0.62 0.55 0.75 0.62 Close to R2

9 R
02
0

0.80 0.78 0.84 0.70 0.87 0.76 >0.5

10
RelativeR

02
0 ¼ ðR2 � R

02
0 Þ

R2

0.08 0.00 0.00 0.01 0.00 0.01 <0.3

11 R
02
m ¼ R2 �½1�ðR02

0 � R2) )1/2] 0.65 0.72 0.57 0.59 0.73 0.66 Close to R2

12 R-R ¼ ��R2
0 � R

02
0

�� 0.06 0.06 0.07 0.01 0.02 0.03 <0.1

13 k 0.97 1.00 0.98 0.99 0.98 1.00 0:85 � k � 1:15
14 k

0 1.03 1.00 1.02 1.00 1.01 1.00 0:85 � k � 1:15

Table 4
Calculated model fit estimates, Q2

F1, Q
2
F2 and Q2

F3, for the datasets A, B, and C.

Dataset Q2
F1 Q2

F2 Q2
F3

A 0.77 0.81 0.87
B 0.75 0.80 0.86
C 0.99 0.99 0.99
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Hyperchem software for all three datasets. The optimization process was
carried out using the Polak–Ribi�ere (conjugate gradient) algorithm, with
the RMS gradient of 0.001 as the termination criterion for each molecule.
The optimized structures were stored with the *.hin extension and used
as input to DRAGON computing software [46].
3.3. | Descriptor generation and screening

Molecular descriptors were calculated in the DRAGON program uti-
lizing optimal structures. By utilizing the caret package in R, descriptors
with constant values and descriptors with variances close to zero were
eliminated from datasets. These descriptors provided no meaningful in-
formation to the model and were therefore discarded [47]. In addition,
among the two high correlated descriptors (above 0.9), the descriptor
Fig. 3. The plot of Y-randomization fo

5

with the high relevance to the corresponded response remained, and the
other was deleted. After preprocessing, the total descriptors were
reduced from 3224 descriptors to 335 (Dataset A), 438 (Dataset B), and
429 (Dataset C) descriptors. These descriptors were separately used as
independent variables in the LAD-LASSO method.

3.4. | Selection of the effective descriptors

Following the preprocessing step, the LAD-LASSO variable selection
approach was applied to use the computed molecular descriptors as in-
dependent variables and the corresponding biological responses as the
dependent variable. The datasets were divided into three parts using the
Kennard-stone algorithm and the Euclidean distance technique to
implement the variable selection method: training set data (about 70% of
the total data), validation set data (about 15% of the total data), and test
set data (about 15% of the total data). The LAD-LASSO variable selection
method was used to choose the most relevant descriptors associated with
the biological responses using the whole training and validation sets.
Furthermore, the test data sets were omitted from the beginning in order
to choose effective descriptors without the effect of the external groups of
chemical compounds. Finally, in evaluating the ANN modeling, the
absence of test sets data at any stage from variable selection to modeling
r all studied datasets A, B, and C.



Fig. 4. Plot illustrating the AD for all datasets for the suggested ANN-
based models.
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is a suitable proof of model superiority. Therefore, descriptors with a
non-zero coefficient (the numbers of 10, 9, and 14 descriptors for data-
sets A, B, and C, respectively) in the corresponding λ were extracted and
used as input to the nonlinear ANN modeling. The name of descriptors,
the category of each selected descriptor, and the standardized coefficient
values were summarized in Table 1.
3.5. | ANN modeling

The relationship between the LAD-LASSO selected descriptors and the
appropriate biological response was established using an artificial neural
network (ANN) model. As a result, a three-layer ANN model with a
backpropagation error technique was employed. The Lev-
enberg–Marquardt (LM) training procedure was used to create ANN
models for all three datasets (trainlm in Matlab Toolbox). Several ANN
6

parameters were optimized simultaneously, and the optimal architec-
tures of the ANN models are 5-6-1, 14-2-1, and 7-4-1 for datasets A, B,
and C, respectively. The entire modeling process was carried out using
the MATLAB program on a Windows operating system with a personal
computer with processor properties of Intel Core i7-4790 K 4.0 GHz,
RAM 8 GB.

3.6. | Docking study

The interaction between the active site amino acids of corresponding
receptors and the suggested chemicals was determined using molecular
docking. The molecular docking procedure was carried out with the
assistance of the Autodock4.2 program [48]. The desired receptors for
each dataset were selected according to the recommendations of the
previous studies [38–45]. So the 3MEC (resolution equal to 2.30 Å) and
the 3HHM receptors (resolution equal to 2.80 Å) were extracted from the
protein data bank site for HIV and cancer inhibitors, respectively [49].
The downloaded receptor file was called in viewer lite software, and
further preparation such as removing water molecules and cofactors and
sub-chain without crystallographic ligand (cognate ligand) was done.
Finally, the remaining structure was considered as studied receptors
structures and stored with *.pdb extension. The prepared file of the re-
ceptor was called in the Autodock4.2 software. The required hydrogen
was added, the non-polar hydrogens were merged, and the Kollman
charge was added to balance the system charge, and finally, the receptor
was saved as the pdbqt format file. The docking process was done in two
steps. First, the evaluation process (dock-redock) was implemented, and
the cognate ligand was docked into the active site to extract the optimum
numbers of genetic algorithm runs (GA runs). The ligand was saved as the
pdbqt. A grid box with 60 * 60 * 60 A⁰3 dimensions and with the co-
ordinates of the center of gravity of the cognate ligands of each receptor
(X¼ 50.431, Y¼ 63.204, and Z 13.716,¼ for pdb code of 3MEC and X¼
60.092, Y ¼ 62.473, and Z ¼ 112.509 for pdb code of 3MHH) was
generated. Then, the suggested compounds were separately docked into
the active site of corresponding receptors using 150 runs of the La-
marckian genetic algorithm (LGA) [50]. Finally, the structure of each
compound with the best conformation was extracted from the molecular
docking, and the ligand-receptor interactions were further investigated
using discovery studio software [51].

4. | Results and discussions

4.1. | Selection of the significant descriptors

The LAD-LASSO variable selection strategy was used to choose the
optimal subset of all variables in this investigation. The DRAGON 5.5
software was used to calculate the molecular descriptors initially. De-
scriptors with the constant and near-constant values (descriptors with a
near-zero variance) were deleted. Then, to reduce the effect of correlated
descriptors, the correlations between the descriptors were calculated
using the corecoeff command in MATLAB software [52]. Then, among
the two descriptors with a correlation above 0.9, one descriptor with the
highest correlation with the biological response remained, and the other
was deleted. Next, the preprocessing procedure was performed for all
three datasets, and the total 3224 molecular descriptors were reduced to
335, 438, and 429 for datasets A, B, and C. Then, the decreased de-
scriptors were defined as the input of the LAD-LASSO variable selection
method. Finally, the most relevant descriptors of different datasets were
obtained after applying the LAD-LASSO variable selection method to the
training and validation datasets. The most significant descriptors selected
using the LAD-LASSO variable selection method were equal to 10, 9, and
14 molecular descriptors for datasets A, B, and C. Table 1 summarizes the
names and categories of these descriptors. The most effective descriptors
were used as ANN modeling inputs. The MTE package was used to
implement the LAD-LASSO code in R [53].

The existence of collinearity was also examined among selected LAD-



Table 5
Physiochemical properties of the new designed compounds and studied compound.

No. Chemical
Structures

Biological activity Leverage No. Chemical
Structures

Biological activity Leverage

NC1 (A) 8.45 0.12 NC2 (A) 7.63 0.06

NC3 (A) 7.50 0.04 NC4 (A) 7.23 0.03

NC5 (A) 7.11 0.04 NC6 (A) 6.94 0.02

NC7 (A) 6.63 0.02 NC8 (B) 8.92 0.66

NC9 (B) 8.78 0.60 NC10 (B) 7.52 0.28

NC11 (C) 6.43 0.25
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Table 6
Drug-likeness and bioavailability parameters of the new designed compounds and studied compound.
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LASSO descriptors for all three datasets. The following equation was used
to calculate the value of the variance inflation factor (VIF parameter):

VIF¼ 1
1� R2

i
i ¼ 1; 2; 3;&; p 5

R2
i is the square of multiple correlation coefficient generated from the

regression of variable i on other variables, where p is the number of LAD-
LASSO selected descriptors. VIF values less than ten indicate no collin-
earity between LAD-LASSO selected descriptors. Therefore, the results
summarized in Fig. 1 show that the VIF values of all descriptors are less
than 10 [54], and there is no collinearity between the LAD-LASSO
selected descriptors of all three datasets.
4.2. | Optimization of the ANN parameters

The association between the LAD-LASSO chosen descriptors and the
corresponding biological response was established using a nonlinear
feed-forward ANN model with an error backpropagation technique. A
multi-layer perceptron ANN model with one input layer, hidden layer,
and one output layer was created for this purpose. According to the
literature, using one hidden layer is sufficient for most prediction prob-
lems [55,56]. The number of neurons in the input layer, the number of
the hidden layer inputs, the number of epochs, and the types of activation
functions have all been optimized to find the best ANN architecture. The
linear purlin function was used as the output layer, and the hyperbolic
tangent sigmoid (tansig) and logarithmic sigmoid (logsig) were used as
transfer functions. “It is clear that having a small and optimal number of
ANN inputs for optimization is preferable. Obviously, 10, 14, and 9
selected descriptors using the LAD-LASSO method are not necessarily
optimal subsets. Therefore, the best subset of descriptors should be
selected among all possible subsets with 2 to entire selected descriptors,
which are greater than 1010 subsets (according to the multiplication of
descriptors modes by the number of nodes and the number of training
epochs). The examination of the performances of such a lot number of
subsets as the ANN inputs is more time-consuming. To consider the
8

importance of each descriptor in the nonlinear ANN model, the selected
descriptors were arranged according to the magnitude of the standard-
ized coefficients (Table 1). Among all created subsets, a subset consisting
of 5, 14, and 7 descriptors with the highest importance was selected as
the optimal subset during the ANN optimization.” So, different ANN
structures (900, 1260, and 810 ANN structures for diverse datasets A, B,
and C) were designed with various inputs (LAD-LASSO selected de-
scriptors arranged based on the magnitude of the standardized coeffi-
cient). The training of the different architectures of ANN models was
performed using training set data with the LM training function. The
optimal structure of the ANN model was selected according to the min-
imum value of the MSEvalidation. The optimal conditions of the best ANN
structure for all three datasets are summarized in Table 2. In order to
predict the test set data, the optimal ANN structure of each relevant
dataset was used.

“Therefore, to compare the proposed method, the penalized LS-based
LASSO variable selection method was used to evaluate the efficiency of
LAD-LASSO. After applying the LS-based LASSO variable selection
method to all three datasets (A, B, and C), 22, 55, and 27 molecular
descriptors were obtained. Since the use of a large number of descriptors
in ANNmodeling causes overfitting [57], it is not suggested to utilize this
number of descriptors to optimize the ANN approach. Therefore, the
selected LS-based LASSO descriptors for all three datasets were arranged
individually based on the magnitude of the standardized coefficients. An
equal number of descriptors of the optimum LAD-LASSO-ANN model
were selected (5, 14, and 7 for A, B, and C datasets, respectively) from
LS-based LASSO selected descriptors based on the order of magnitude of
the standardized coefficients and defined as ANN inputs. After opti-
mizing the ANN parameters, the superior ANNmodel was obtained based
on the minimum MSE value of the validation set for each dataset. The
LASSO-ANN with an optimal structure of 5-2-1 and 20 training epochs,
LM as a training function, and a logarithmic sigmoid as the transfer
function has a minimumMSEvalidation of 0.17 for dataset A. The optimum
LASSO-ANN for the dataset B is 14-2-1 with training epochs equal to 5,
LM as a training function, and a tangent hyperbolic sigmoid as the
transfer function with the MSEvalidation equal to 0.11. LASSO-ANN with
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7-3-1 architecture, 5 training epochs, LM as a training function, and a
tangent hyperbolic sigmoid as the transfer function has a minimum
MSEvalidation of 0.15 for dataset C.”
4.3. | Validation of the model

The main goal of any QSAR modeling is to create a robust model with
a high capacity to predict the biological activity of new compounds (test
set data as the external set) accurately and reliably. Therefore, different
criteria can be used to evaluate the developed ANNmodels, such as using
validation (internal test) set, test (external test) set, and leave one out
(LOO) technique for the prediction of the whole dataset. In addition, for
the evaluation of produced QSAR models, the Y-randomization test, the
applicability domain (AD), and the calculation of statistical parameters
are commonly utilized.

In order to evaluate the prediction potency of the optimal ANN
models for each data set, the biological activities of both validation and
test sets data were predicted under the optimal conditions. The predicted
values are given in Tables S1–S3. In addition, the predicted values were
plotted in terms of actual values (Fig. 2a,d, and 2g). The determination
coefficient (R2) value above 0.6 indicates the acceptable prediction
ability of the LAD-LASSO-ANN model in all three studied datasets.

The LOO technique was also used to evaluate the goodness of the
optimumANNmodels. To achieve this, the optimal ANNmodel was used,
with the difference being that in this technique, one data point was
extracted once as a test data point. After that, the model was trained with
only the remaining data, the extracted data point was predicted. This
procedure was repeated for the total number of data to predict the
9

biological response of whole data once as a test set. Then the graph of the
predicted values was plotted in terms of the actual values. The value of
Q2

LOO for all three studied data is greater than the acceptable value of
0.5, which indicates the high prediction ability and generalizability of
the optimal ANN models with the selected descriptors of the LAD-LASSO
method.

The prediction results of the model were also evaluated using stan-
dardized residual plots. So, the standardized residuals (ri) were computed
for the predicted values of the LOO technique according to the following
equation:

ri ¼ ei
sei

¼ ðyi � byiÞ
sei

Eq 6

in which ei is the difference between the actual and expected re-
sponses for each observation i¼ 1,…, n, and sei is the standard deviation
of residual values. The obtained standard residuals are plotted in terms of
actual response values in Fig. 2b, e, and 2h. According to the obtained
standardized residual graph, less than approximately 5% (at 95% confi-
dence level) of the whole dataset (equal to four chemical compounds for
all datasets) are out of the significant range of �2. Thus, the obtained
results (Fig. 2c, f, and 2i) show a reasonably random pattern and prove
that the developed QSAR models provide good fitting.

Along with the methodologies discussed previously, numerous
commonly used statistical parameters were employed to evaluate the
best LAD-LASSO-ANN models. The statistical calculations show that all
statistical parameters have an acceptable value. The parameter name,
calculation formula, calculated values for different datasets, and toler-
able range are summarized in Table 3.



Fig. 6. The interaction of NC2 with 3M8Q.

Z. Mozafari et al. Chemometrics and Intelligent Laboratory Systems 222 (2022) 104510
“The results obtained confirm that the LAD-LASSO is an efficient
variable selection method. However, a comparison between the effi-
ciencies of LS-based LASSO and LAD-LASSO was conducted using LS-
based LASSO selected descriptors as inputs of the optimized ANN
model (LASSO-ANN denoted in section 4.2). Then, the biological activ-
ities of test compounds of all data sets (A, B, and C) were predicted using
the optimum LASSO-ANN models. The MSE values of 0.19, 0.11, and
0.27 were obtained for test compounds of data sets A, B, and C, respec-
tively. Comparing the obtained results with those of LAD-LASSO-ANN
(Table 3), it can be seen that the selected LAD-LASSO descriptors have
provided ANN models with good prediction ability and accuracy rather
than LS-based LASSO as a penalized variable selection method."

“In addition to the calculated statistical parameters in Table 3, several
other Q2 dependent parameters such as Q2

F1, Q2
F2, and Q2

F3 were
calculated using the following equations:

Q2
F1 ¼ 1� �anExti¼1 ðbyi � yiÞ2

�anExti¼1 ðyi � yTrÞ2
¼ 1� PRESS

SSExtðyTrÞ
7

Q2
F2 ¼ 1�

PnExt
i¼1 ðbyi � yiÞ2PnExt
i¼1 ðyi � yExtÞ2

¼ 1� PRESS
SSExtðyExtÞ

8

Q2
F3 ¼ 1�

�PnExt
i¼1 ðbyi � yiÞ2

��
nExt�PnTr

i¼1ðyi � yTrÞ2
��
nTr

¼ 1� PRESS=nExt
TSS=nTr

9

where, yTr and yExt indicate the response means of the training set and the
external test set, respectively. PRESS is the predicted residual error sum
10
of squares, TSS is the total sum of squares, the sum of squared deviations
from the data set. PRESS is the sum of squares of the SSExtðyTrÞ and
SSExtðyExtÞ are the total sum of squares of the external set calculated using
the mean of the training set and external set responses, respectively. Also,
the nTr and nExt are the number of training and external sets objects [58,
59]. Thus, the Q2 value should always be accompanied by descriptive
statistics of the test set used to compute it. The calculated Q2 parameters
for all three data sets are given in Table 4. The values ofQ2

F1, Q
2
F2, andQ2

F3
parameters are greater than 0.50 and close to 1.0, which indicate that the
external test data are uniformly distributed over the range of the training
set and appropriate some basic mathematical properties of the model,
such as ergodic and associative properties."

1-Mean Absolute Error, 2- Relative Error of Prediction, 3- Mean
Square Error, 4- Mean Relative Error. yi is observed (experimental) value,byi is predicted value and y is the average value of observed values, p is
descriptors numbers, and n is compounds numbers. R2 Squared correla-
tion coefficient between the observed and predicted value of compounds
with intercept R2

0 the squared correlation coefficient between the
observed and predicted value of compounds without intercept. R

02
0 Bears

the same meaning as R2
0, but uses the reversed axis. k is the slopes of

predicted vs. actual and k
0
are is vise versa. The conditions of each op-

timum ANN model was written above each model for example 5-6-1 is
the optimum conditions of LAD-LASSO-LM-ANN model for dataset A.

The Y-randomization test was used to determine the model robust-
ness and whether or not there was a probability that the association
between the independent and dependent variables was a coincidence [8].
Hence, the biological response values were randomized 1000 times in the
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range of its changes. The optimum LAD-LASSO-ANN models were
developed with random biological responses. The biological activity
values of the test set were predicted under the optimal conditions with a
random response. This process was repeated 1000 times for each dataset
in its own optimal LAD-LASSO-ANN model. The reliable QSAR model
must have R2 values much smaller than the acceptable value of 0.6 in
random models. The predicted values were plotted in terms of actual
values for every 1000 models, and the corresponding determination co-
efficient was obtained. The R2 values for 1000 implementations in
datasets A, B, and C are given in Fig. 3. As can be seen, R2 values are
smaller than 0.5, and the results show the robustness and goodness of the
LAD-LASSO-ANN models.

Another QSAR model evaluation technique is the applicability
domain (AD) analysis [60]. AD is a theoretical chemical space that is
created using molecular descriptors of the training set and its relevant
biological responses. Therefore, if the new chemical data is placed in this
theoretical chemical space of AD, it indicates that the model has been
able to predict it well in the face of the data that it has not seen (external
test set). AD was obtained by calculating the leverage of the training
dataset. “The leverage (H) of a query chemical is proportional to its
Mahalanobis distance measure from the centroid of the training set. The
11
leverages values are calculated for a given dataset using the following
formula:”

h ¼ xiðXTXÞ�1xTi 10

where X is the matrix of molecular descriptors associated with the
training set data and xi is the vector of descriptors associated with each
chemical data row. T also denotes the transposition of the matrix. The
chemical space of AD was represented using the Williams diagram
(Fig. 4). Hence the standardized residual values versus h data were
plotted. For AD analysis, chemical data must be within the two confi-
dence limits of the Williams plot. First, the chemical data should not
exceed the standard deviation of 3 times the standardized residual. In
addition, the h values of the chemical data should be less than the
warning value of h*, which can be calculated using 3p/n. In this equa-
tion, p equals the number of model descriptors plus one, and n is the
number of training set data [60]. As Fig. 4 shows, the h values of dataset
B are in both acceptable ranges. In the Williams diagrams of datasets, A
and C, only one data is more than h *, and the rest computed h values are
satisfactory. Therefore, the robustness and reliability of the
LAD-LASSO-ANN models were proven for all studied datasets. “QSAR
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models that have been thoroughly established should be applicable in
discovery of novel compounds located within the chemical space of the
studied compounds [61]. It is well known that compounds located far
away from the centroid value have higher leverage (h) values, indicating
a general difference between the studied compounds [61]. Therefore, the
similarities of the proposed compounds to the studied compounds were
evaluated by calculating the h values of new compounds and examining
their position within a defined domain. The calculated h values of new
proposed compounds of each data set are listed in Table 5. According to
the data obtained and the applicability domain of the model for all data
sets (William's plots in Fig. 4), it is clear that the H values of the proposed
compounds fall within the chemical range of studied data sets. Therefore,
all proposed compounds have lower h values than h*, which means that
the suggested compounds are accurate and reliable [61–63]."

4.3.1. The suggestion of new compounds
In this study, an attempt was made to propose new compounds with

appropriate biological activity according to the selected LAD-LASSO
descriptors in the model. Therefore, due to the effect of interpretable
descriptors, the structures of weak compounds were modified, and
several new compounds (NC) were suggested for each dataset. Then the
biological activity of the proposed compounds was predicted using the
superior model of each dataset. All proposed compounds were also tested
for pharmacokinetic features and the accuracy of drug-likeness rules. For
further exploration, compounds with appropriate biological activity were
docked into the active site of the respective receptor. Finally, the docked
complex (new compound- receptor) was analyzed using BIOVIA Dis-
covery Studio Visualizer [64] to show the type of interactions (hydro-
phobic and hydrophilic) between the ligands and corresponding
receptors. For all datasets A, B, and C, a discussion of how to perform
12
structural modifications, how to implement molecular docking simula-
tions, and the types of interactions is provided.

So, according to the descriptor coefficients of dataset A in Table 2,
structural modifications such as adding NH2 and SO2 substitutions to the
weak compounds (compound 40 with pIC50 ¼ 4.52 and compound 36
with pIC50 ¼ 4.77) cause increasing the biological activity. In addition,
the negative coefficient of descriptor F03[O–O] indicates that com-
pounds without this group have better biological activity. Therefore,
there is no such group in the proposed structures. Due to the effects of
explained descriptor, some modified structures (NC1 to NC7) have been
suggested. Then, the LAD-LASSO descriptors were computed using
optimized structures. Finally, the biological activities of the proposed
structures were predicted using the optimumANNmodeling. As shown in
Table 5, the biological activity of weak compounds had a significant
improvement.

Due to the impact of the selected LAD-LASSO descriptors (Table 2),
new compounds were also proposed using modifications of the weak
compounds of dataset B compounds (compounds 26 and 27 with bio-
logical activity equal to 4.17 and 4.2, respectively). Obviously, the
presence of halogenated groups on the aromatic ring and the absence of
ketone in the proposed structures cause increasing biological activity. So,
using HyperChem software, the proposed structures (NC8 to NC10) were
designed and optimized, and then the selected LAD-LASSO descriptors
were derived using DRAGON software. Finally, the best ANN model was
used to determine the biological activity of the suggested chemicals.
Table 5 summarizes the findings, which reveal that the weak structural
modifications were successful, and the biological activity of the new
compounds was greatly improved. The new structures of dataset C were
also suggested using the influence of selected LAD-LASSO selected de-
scriptors. As shown in Table 1, the absence of F attached to Carbon Sp2
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and the presence of terminal Carbon Sp3 in the chemical structure in-
creases the biological activity. Therefore, the proposed compounds
should not have such a group. In addition, the proposed structures
without alkoxy groups attached to the aromatic ring will have more
biological activity. Due to the effect of the descriptions mentioned above,
the weak compounds in dataset C were identified (compounds with
biological activities equal to 4.01 and 4.1). Sp3 carbon groups were added
to the weak compounds, and structures without F attached to Sp2 carbon
and alkoxy attached to the ring were proposed. The LAD-LASSO model
descriptors were derived using DRAGON software, and a modified
structure (NC11) was designed and optimized. Once the optimal ANN
was implemented, the biological activities of the proposed compounds
could be predicted. Table 5 shows that the pharmacological activity of
the recommended chemical compounds has improved. “An ADMET
(absorption, distribution, metabolism, excretion, and toxicity) analysis
was performed on the newly developed compounds to establish their
drug-likeness and pharmacokinetics, respectively. The ADMET pre-
dictions can be obtained through the use of a web-based tool that is easily
accessible such as SwissADME [65]. The physical and chemical qualities
of a drug-like compound are critical in the progression of that molecule
from an investigational new drug into a successful drug candidate. The
physicochemical and pharmacokinetic properties of the drug candidate
can be calculated using various rules of drug-likeness such as Lipinski
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(Rule of 5) [35], Ghose [36], and Veber [37]. A good drug candidate
should be in excellent agreement with the most important drug-likeness
rules. Rule of 5 states that the proposed drug candidate must have a
number H-bond donor (expressed as the sum of OHs and NHs) lower than
5, the molecular weight (MW) lower than 500, the MLogP lower than
4.15, and H-bond acceptors (expressed as the sum of Ns and Os) lower
than 10. As shown in Table 6, Lipinski's parameters were calculated for
the suggested new compounds (NC1 to NC8 for dataset A, NC9-NC10,
and NC11-NC12 for Datasets B and C, respectively). All the mentioned
compounds are in agreement with the rule of 5 terms. As a result, to
overcome the limitations of the rule of 5, some extensions have been
introduced through the Ghose filter and Veber's modification to improve
and access the qualitative possibility of the molecule becoming a more
efficient oral drug [66]. According to the Ghose rule, the partition co-
efficient (WLogP) of an orally active drug should be in ranges between
�0.4 and 5.6, the molar refractivity (MR) should range from 40 to 130,
molecular weight (MW) should be range from 180 to 480, and the
number of atoms (nAT) present in an orally active drug range between 20
and 70 [36]. Veber's modification includes the number of rotatable bonds
(#Rot. bonds) lower than 10, and also, the total polar surface area (TPSA)
of the drug should not be greater than 140 Area square [37]. As it can be
seen in Table 6, most of the suggested compounds are in agreement with
the drug-likeness rules. The results (Table 6) show that most proposed
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compounds passed the Ghose and Veber filters, and two of them have a
Ghose violation (NC4 and NC10). A bioavailability score (BAS) is
formulated as the probability of a compound having bioavailability
higher than 10% in the rat [67]. All the compounds have a bioavailability
score of 0.55 or 0.56, which means excellent pharmacokinetic properties
[67]. Additionally, the selected compounds were evaluated for synthetic
accessibility (SA), using a scale ranging from 1 (extremely simple to
synthesize) to 10 (extremely difficult and complex to synthesize)) [68].
All suggested compounds have a SA close to 3 (Table 6), indicating that
they are relatively simple to synthesize.” The proposed compounds
approved by drug-likeness rules were used for docking simulation. After
generating the proposed active compounds with acceptable pharmaco-
kinetic properties, the interactions of the suggested chemical compounds
with the active site of the receptor were also investigated. As a result, the
structures of the proposed compounds were optimized and then saved as
a pdb file and then used as input to the Autodock4.2 software. Under
ideal conditions, all recommended compounds were docked to the active
site (LGA runs equal to 150). The docking software was used to extract
the optimal conformation of the proposed compounds with the lowest
binding energy. The discovery studio software was used to acquire the
ligand-receptor interactions. The 2D interaction figures are given for the
most active proposed compounds in Figs. 5–9. The results indicated that
the proposed compounds have a suitable hydrophilic, hydrophobic, and
van der Waals relationship with the receptor, indicating that they will be
stable in their receptor-binding sites. The interaction graphs of the sug-
gested potential compounds can be seen in the supplementary file
(Figs. S1–S6). The chemical structures of new suggested compounds and
their predicted biological activity were summarized in Table 5.

The starred highlighted items are related to the compound that has
been rejected by at least one of the Ghose or Veber rules.

5. Conclusion

In three datasets, the created LAD-LASSO-ANN model was utilized to
predict the biological activity of chemical substances. The first step was
to use the DRAGON software to calculate molecular descriptors. After
preprocessing the data, the most successful LAD-LASSO descriptors were
defined as ANN input. The ANN parameters were optimized, and the best
ANN models were chosen based on the minimum value of the MSE of the
validation sets. The biological activities of the test set compounds were
predicted based on the optimum ANN model. Statistical parameters such
as R2 and MSE values were computed for the test sets. The results were
equal to 0.87 and 0.13 for dataset A, 0.84 and 0.07 for dataset B, and 0.87
and 0.11 for dataset C. The AD test was also performed for all three data
sets, and the results of the Williams diagram confirm the presence of the
majority of data within an acceptable range. This study examined the
significance of numerous descriptors and proposed several new highly
active chemicals. The proposed compound structures were drawn and
optimized. Afterward, the descriptors of the LAD-LASSO model were
computed. Predicting the biological activity of the proposed drugs was
accomplished using the optimum ANN. Table 5 demonstrates the rele-
vant consequences for the estimated biological response of the suggested
potent chemical compounds. The ligand-receptor interaction was
extracted via molecular docking research. The different hydrophilic and
hydrophobic interactions of the proposed compounds with the active site
amino acids indicate the stability of the proposed compounds in the
respective proteins. It should be noted that all the proposed compounds
are acceptable in terms of the drug-likeness rules (Table 6). In addition,
the ease of synthesis indicates that the synthesis of compounds is possible
on a laboratory scale.
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