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Abstract - Generating random polygons problem is important 

for verification of geometric algorithms. Moreover, this 

problem has applications in computing and verification of 

time complexity for computational geometry algorithms such 

as Art Gallery. Since it is often not possible to get real data, a 

set of random data is a good alternative. In this paper, a 

heuristic algorithm is proposed for generating sunflower 

random polygons using ��� ��� �� time. 
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1 Introduction 

  Computational geometry is a very important research 

field in computer science in which most computations are 

performed on known geometrical objects as polygons. 

Polygons are a convenient representation for many real-world 

objects; convenient both in that an abstract polygon is often 

an accurate model of real objects and in that it is easily 

manipulated computationally. Examples of their applications 

include representing shapes of individual letters for automatic 

character recognition, of an obstacle to be avoided in a robot's 

environment, or a piece of a solid object to be displayed on a 

graphic screen [7]. 

The generation of random geometrical objects has received 

some attention by researchers [2][3][6]. A challenge of these 

problems is the generation of random simple polygons. Since 

no polynomial time algorithm is known to solve the problem, 

researchers either try to use heuristic algorithms which don't 

have uniformed distribution or restrict the problem to certain 

classes of polygon such as monotone and star-shaped 

polygons [1][3][4]. 

The importance of geometric objects application is the 

simplicity of testing geometric algorithms. Since a set of data 

may become both too large and too hard to define for 

practical purposes, what one might do is to use randomly 

generated data that has a high probability to cover all the 

different classes of inputs. Thus, since practical data may not 

be available for testing, it is natural to test the algorithm on 

randomly input data. 

Polygons are one of the fundamental building blocks in 

geometric modeling and they are used to present a wide 

variety of shapes and figures in computer graphics, vision, 

pattern recognition, robotics and other computational fields. 

Some recent applications address uniformed random 

generation of simple polygons with given vertices, in the 

sense that a polygon will be generated with probability 
�

	
 if 

there exist a total of 
 simple polygons with such vertices. 

One of the important geometry problems in which polygons 

play an important rule, is art gallery whose purpose is 

guarding a polygonal art gallery with the least number of 

guards (cameras). A well-known kind of art gallery problem 

is sunflower art gallery. The proposed question is this: What 

is the smallest number of guards required to protect the 

Sunflower Art Gallery? 

Figur 1 shows a sunflower art gallery which is protected by 4 

stationary guards. Some of the guards can not see through 

walls around corners of art gallery. Every point is visible at 

least one guard and it would be more economical to protect 

the gallery with fewer guards, if possible [5]. 

In this paper a heuristic algorithm is proposed for the 

generation of random sunflower polygons to estimate such 

problems.  

 

Fig. 1. The sunflower art gallery [5] 

The following sections of this paper have been organized in 

this way: section 2 has been allocated to related works. In 

section 3 the needed preliminary concepts are stated. In 

section 4 the proposed algorithm is posed for generating 

random sunflower polygon and its performance and accuracy 

are investigated and finally in section 6 the conclusion will be 

discussed. 
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and the visibility of all points in 

ince, for generating this random 

all partitioned parts are independent of one another 

and they haven't subscription together and also as in every 

e polygon, is a sunflower 

, it is called 

 

Generation of a sunflower polygon with connecting the sorted 

Verification of algorithm performance 

In this section, the performance of proposed algorithm is 

investigated by computing its time complexity. In this 

algorithm, time of obtaining the most external convex hull 

based on Graham algorithm which it 

eded to generate of convex 

points. Partitioning of points � 

time that is in the best case ����, 

i.e., in the case of  existing only a resulted part of points 

partitioning. Finding the leftmost point with least �-

���)�. 

Sorting points of the any part set, in the case the sprawl of 

points exist in any part averagely, is 

. In the worst case, which exists only one 

time. Therefore, 

algorithm is 

properly for any set of 

convex hull 

discuss every set 

in every 

ince, for generating this random 

all partitioned parts are independent of one another 

and they haven't subscription together and also as in every 



part, all its point set are visible from 23 on ��, because of polar 

sorting of points around 23, it is verified simply that a random 

sunflower polygon is  inevitably generative by this proposed 

algorithm on any set of given points with number of 

assumption convex hull layers � � �.  

5 Conclusions 

 In this paper, a heuristic algorithm with time complexity 

of ��� �� �� was proposed for the generation of random 

sunflower polygon. This algorithm can be used to estimate 

many algorithms and geometric problems such as art gallery. 

Also it was proved that this algorithm has properly on any set 

of given points with intricate assumption convex hulls (with 

the number of layers � � �) and it generates a random 

sunflower polygon. 
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