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This paper discusses the distributed consensus problem of linear dynamical multi-agent systems with
missing control input in some intervals and also delay. At first, assuming zero control input in some
intervals and delay, the model of system in such conditions is formulated. Then, a distributed adaptive
controller based on the relative states of neighboring agents is proposed. By constructing a set of

consensus criterion with explicitly exponential convergence rate is established. Furthermore, the
obtained condition will be extended to the multi-agent system, when a false signal is injected instead of
the nominal control signal in some intervals. Finally, an illustrative example is solved to show the
advantage of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

A group of autonomous agents can perform with more advantages than a single agent in the dynamical systems. For instance, using a multi-
agent system (MAS) leads to

� more adaptivity and scalability of system, and
� more robust against the system and environment faults.

Based on the above reasons, the cooperative control of MAS has been an important research topic in the different areas such as
distributed control of vehicles [1–3], flocking and swarming in multi-robot systems [4–6], data fusion and data aggregation in wireless
sensor networks [7–10], filtering problems in sensor networks [11], control, filtering and estimation problems in networked control
systems [12–15], software MAS in video streaming [16], power systems [17], coordinated defense systems such as synchronization of
satellites or spacecraft [18–20]. Among the cooperative problems in MAS, consensus problem means the agreement between agents to
reach a common assessment or decision based on the distributed information and a communications protocol. Many of the cooperative
problems can be thought of as special cases of consensus; for instance, in formation, when the position of each agent in the geometric
pattern is not specified a priori. In general, the consensus problem is an interaction principle among agents that is solved by the control
approach.

Recently, numerous results have been reported in the consensus problem of MAS. For instance; in [21–24] the analysis of consensus
tracking of continuous-time first and second-order MAS has been studied. In [25–27], consensus tracking for a class of second-order non-
linear MAS was studied. Consensus of networks of high-order integrators were studied in [28–31] and linear systems in [32–35,36]. Address
a distributed tracking problem for multiple Euler–Lagrange systems. It should be noticed that, considering more general model for MAS can
leads to more practical results in this field. As an example, in [31] based on the assumed model, the proposed approach can only be applied to
consensus problem of MAS. In this reference, the rendezvous problem could not be solved because of the non-zero velocity in consensus
area. In this paper, by selecting the generalized linear model for MAS, rendezvous problem can be solved by the proposed control protocol.
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Also, the existing consensus algorithms reported in various papers can be classified into three classes: consensus without a leader [37],
consensus with a leader [38] and model reference consensus [39]. In this work consensus without need to leader will be discussed.

In most applications of MAS, delay is inevitable. Delay in such systems is categorized in two types: communication delay between
agents and input delay (delay in the transmission of control input to agents). These can occur due to multi-hop communications,
movements of the agents, and unavoidable delays in the communication channels. Delay in such systems usually leads to instability,
complexity and hidden oscillations of the system. That is why, the consensus problem in MAS with time-delay has attracted the attention
of many researchers; for instance, [40] discussed the consensus problem in directed networks with double-integrator dynamics and non-
uniform time-varying communication delays via Lyapunov–Razuminkhin theorem [41], investigated second-order consensus of MAS with
time-varying delays based on the Lyapunov stability theory [42], studied the robust consensus problem for higher-order MAS subjected to
external disturbance and delays in networks. In [41], second-order group consensus for MAS with constant input delay has been discussed.
Asymptotic stability of MAS with topology variances and time-varying delays has been addressed in [43].

On the other hand, fault is an unavoidable phenomenon especially in the complex systems. Fault can result in unsatisfactory perfor-
mance of the system. It can occur due to provisional failures of communication links, network-induced packet loss, temporary intentional
interruption applied to the control block, or false data injection by attacker to the control input in some intervals. These conditions lead to
occasional corruption of control signal transmitted to agents which may cause instability and oscillation of agent behavior. These faults
often exist in MAS due to various factors as stated above. However, fault tolerant consensus of MAS in such conditions has not been fully
discussed. Among the papers in the field of MAS, only in [44] the distributed tracking problem of linear higher-order MAS with occa-
sionally missing control inputs has been studied. The proposed method in [44] depends on eigenvalues of Laplacian matrix. This means
results are dependent on global information of the communication graph that may not be available in general.

In summary, the following motivations led to the present work: (i) existence of delay in almost all MAS applications with undesirable effect on
the performance of system, (ii) the lack of adequate publications dealing with this issue together with occasionally missing control inputs in MAS,
and (iii) work reported in paper [44] is only applicable to system with known communication graph which did not cover the whole area of the
current research.

The paper is organized in five sections. In Section 2, the required definitions and lemmas are introduced. In Section 3, the model of system
with fault in data transmission from control input to the agents and delay is expressed. In Section 4, the sufficient conditions for the system
stability are offered. Finally in Section 5, a simulation example is given to show the advantages of the proposed conditions.
2. Preliminaries

IN represents the identity matrix of dimension N. 1 Denote a column vector with all entries equal to one. A � B denotes the Kronecker
product of matrices A and B. ‖x‖ denotes its 2-norm. For a symmetric matrix A, λminðAÞ and λmaxðAÞ denote, respectively, the minimum and
maximum eigenvalues of A, and the symbol ‘� ’ stands for symmetric blocks in the matrix inequality.

A directed graph G with the set of nodes V ¼ v1; v2; :::; vnf g, the set of directed edges ε¼ v� v, and a weighted adjacency matrix
Aadj ¼ aij

� �
N�N with non-negative adjacency elements aij. An edge eij in graph G is denoted by the ordered pair of nodes ðvj; viÞ, where vj and

vi are called the parent and child nodes, respectively, and eijAε if and only if aij40. Also, the Laplacian matrix L¼ lij
� �

N�N of G is defined as

lij ¼
�aijia j

XN
k ¼ 1;ka i

aik ii¼ j

8>><
>>:

Lemma 1. [1]: Zero is an eigenvalue of L with 1 as a right eigenvector and all nonzero eigenvalues have positive real parts. Furthermore, zero is a
simple eigenvalue of L, if and only if G has a directed spanning tree.

Lemma 2. [45]: For any positive definite matrix MARn�n, scalers γ1oγðtÞoγ2, and a vector matrix x : �γ2 �γ1
h i

-Rn such that the
following integrations concerned is well defined, then:

�ðγ2�γ1Þ
Z t�γ1

t�γ2

_xT ðsÞM _xðsÞds
 !

r� xðt�γ1Þ�xðt�γ2Þ
� �T

M xðt�γ1Þ�xðt�γ2Þ
� �

Lemma 3. [42]: For any positive definite matrix RARn�n we have

DEþETDT rDR�1DT þETRE

Remark 1. . In this work, it is assumed the communication graph between agents contains a spanning tree. If at least one agent is isolated
and do not receive information from other agents, consensus cannot be achieved.
3. Problem statement

In this paper, a network of N agents with linear dynamics is considered. The dynamics of the i-th agent is described by

ẋi ¼ ↓AxiþAdxiðt�dðtÞÞþBuiðt�dðtÞÞ;
xðθÞ ¼ ↓ϕðθÞ;θA �d2;0

� � ð1Þ
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where xiARn is the state, uiARp is the control input, A;Ad;B are the constant known matrices with compatible dimension. fϕðθÞg0�d2
is the

initial conditions values. dðtÞ is the time-varying delay which is bounded as

d1rdðtÞrd2; _dðtÞrτo1

In this work we want to solve the consensus problem between agents such that

lim t-1ðxi�xjÞ ¼ 0; 8 i; j¼ 1;2; :::;N ð2Þ
It is assumed that there is a fault in transmission of control input to agents as follows:

ui ¼
ui t2krtrt2kþ1

f i t2kþ1otot2kþ2; kAN :

(
ð3Þ

Let
x¼ x1T ; x2T ; :::; xNT

� �
, u¼ u1

T ;u2
T ; :::;uN

T
� �

, F ¼ f 1
T ; f 2

T ; :::; f N
T

h i
using (1), (3) the following closed loop system is obtained

_xðtÞ ¼ ððIN � AÞxðtÞþðIN � AdÞxðt�dðtÞÞþðI � BÞu t2krtrt2kþ1

ðIN � AÞxðtÞþðIN � AdÞxðt�dðtÞÞþðI � BÞF t2kþ1otot2kþ2; kAN

(
ð4Þ

Based on (2), the disagreement between agents can be expressed in the following form:

ζi ¼ xi�1=N
XN
j ¼ 1

xjðtÞ; ð5Þ

which can be presented in the following vector form:

ζ ¼ ðM � InÞx; M¼ IN�1=N11T ; ð6Þ
From (4) and (6) the following equation for consensus error is obtained:

_ζðtÞ ¼ ðIN � AÞζþðIN � AdÞζðt�dðtÞÞþðM � BÞu tkrtrt2kþ1

ðIN � AÞζþðIN � AdÞζðt�dðtÞÞþðM � BÞF t2kþ1otot2kþ2; kAN

(
ð7Þ
4. Main results

4.1. Missing control input in some intervals

In this section, we analysis the delay dependent consensus condition for MAS (1) with fault in the control input as (3) with F ¼ 0:
To achieve distributed consensus and simultaneously independence of controller gain from eigenvalues of Laplacian matrix, the following

controller is suggested:

ui ¼ ciΚ
XN
j ¼ 1

aijðxj�xiÞ;

c ̇i ¼ ηi �γiciþ
XN
j ¼ 1

aijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞ
0
@

1
A

2
4

3
5; ð8Þ

where KARn�p; ηi; γi are positive scalars and Λ¼ �P1BK:
For the stability analysis of system (7) with controller (8), the stability of system in cases of non-failure and failure of the controller is

analyzed, separately.
At first, the stability analysis of system during tkrtrt2kþ1 is investigated. We choose the following Lyapunov–Krasovskii functional

V1 ¼ V11þV12þV13 ð9Þ
With

V11 ¼ 1=2ζT ðtÞðL � P1ÞζðtÞþ
XN
i ¼ 1

ci
2

2ηi
;

V12 ¼
Z t

t�dðtÞ
eα1ðs� tÞζT ðsÞðL � Q1ÞζðsÞds;

V13 ¼
Z 0

t�dðtÞ

Z t

tþθ
eα1ðs� tÞ _ζ

T ðsÞðL � R1Þ _ζðsÞdsdθ;

where ci ¼ ci�_c; ĉ¼ 1
λ2

and λ2 denotes the smallest nonzero eigenvalue of L: Also, we define C ¼ diagðci; i¼ 1; :::;NÞ:
Now, we compute the time-derivative of V1(t)

_V11 ¼ 1=2ζT ðtÞðL � P1AÞζðtÞþ1=2ζT ðtÞðL � P1AdÞζðt�dðtÞÞþ1=2ζT ðtÞðL � ATP1ÞζðtÞþ1=2ζT ðt�dðtÞÞðL � Ad
TP1ÞζðtÞþζT ðtÞðCL2

� P1BKÞζðt�dðtÞÞ

þ
XN
j ¼ 1

ci �γiciþ
XN
j ¼ 1

aijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞ
0
@

1
A

2
4

3
5; ð10Þ
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_V12 ¼ ζT ðtÞðL � Q1ÞζðtÞ�e�α1dðtÞð1�τÞζT ðt�dðtÞÞðL � Q1Þζðt�dðtÞÞ�α1V12rζT ðtÞðL � Q1ÞζðtÞ�e�α1d2 ð1�τÞζT ðt�dðtÞÞðL � Q1Þζðt�dðtÞÞ
�α1V12; ð11Þ

_V13 ¼ dðtÞ _ζT ðtÞðL � R1Þ _ζðtÞ�dðtÞ
Z t

t�dðtÞ
eα1ðs� tÞ _ζ

T ðtÞðL � R1Þ _ζðtÞds�α1V13

rd2 _ζ
T ðtÞðL � R1Þ _ζðtÞ�dðtÞe�α1d2

Z t

t�dðtÞ
_ζ
T ðtÞðL � R1Þ _ζðtÞds�α1V13; ð12Þ

In addition

ζT ðtÞðCL2 � P1BKÞζðt�dðtÞÞ ¼ �
XN
j ¼ 1

ðciþ_c Þ
XN
j ¼ 1

aijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞ
0
@

1
A; ð13Þ

So

_V11 ¼Π�
XN
j ¼ 1

ðciþ_cÞaijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞÞþ
XN
i ¼ 1

�γiciciþ
XN
i ¼ 1

c
i

XN
j ¼ 1

aijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞ
0
@

1
A; ð14Þ

With

Π ¼ 1=2ζT ðtÞðL � P1AÞζðtÞþ1=2ζT ðtÞðL � P1AdÞζðt�dðtÞÞþ1=2ζT ðtÞðL � ATP1ÞζðtÞþ1=2ζT ðt�dðtÞÞðL � Ad
TP1ÞζðtÞ

which results

_V11 ¼Πþ
XN
j ¼ 1

�γiciciþζT ðtÞðĉL2 � P1BKÞζðt�dðtÞÞ ð15Þ

Let’s define U ¼ 1=
ffiffiffiffi
N

p
Y1

h i
;UT ¼ 1=

ffiffiffiffi
N

p

Y2

" #
; such that UTLU ¼ diag 0; λ2; :::; λN

� �
and ζ ¼ ðUT � IÞζ,

Therefore

_V1þα1V1r�
XN
i ¼ 1

γiciciþα1

XN
i ¼ 1

ci
2

2ηi
þΠþα1ζ

T ðtÞðL � P1ÞζðtÞþζT ðtÞðĉL2 � P1BKÞζðt�dðtÞÞ

þζT ðtÞðL � Q1ÞζðtÞ�e�α1d2 ð1�τÞζT ðtÞðt�dðtÞÞðL � Q1Þζðt�dðtÞÞþd2 _ζ
T ðtÞðL � R1Þ _ζðtÞ

�dðtÞe�α1d2

Z t

t�dðtÞ
_ζ
T ðtÞðL � R1Þ _ζðtÞds¼ �

XN
i ¼ 1

γiciciþα1

XN
i ¼ 1

ci
2

2ηi
þ
XN
i ¼ 2

λiðζi
T ðtÞð1=2ATP1þ1=2P1Aþα1P1þQ1ÞζiðtÞ

þζi
T ðtÞð1=2Ad

TP1þ1=2P1Adþ_cλiP1BKÞζiðt�dðtÞÞ�ζi
T ðt�dðtÞÞe�α1d2 ð1�τÞQ1ζiðt�dðtÞÞÞþd2 _ζ

T ðtÞðL � R1Þ _ζðtÞ

�dðtÞe�α1d2

Z t

t�dðtÞ
_ζ
T ðtÞðL � R1Þ _ζðtÞds

¼ �
XN
i ¼ 1

γiciciþα1

XN
i ¼ 1

ci
2

2ηi
þ
XN
i ¼ 2

λiðζi
T ðtÞð1=2ATP1þ1=2P1Aþα1P1þQ1ÞζiðtÞþζi

T ðtÞð1=2Ad
TP1þ1=2P1AdþP1BKÞζiðt�dðtÞÞ

�ζi
T ðt�dðtÞÞe�α1d2 ð1�τÞQ1ζiðt�dðtÞÞÞþd2

_ζ
T
ðtÞðL � R1Þ _ζðtÞ�dðtÞe�α1d2

Z t

t�dðtÞ

_ζ
T
ðtÞðL � R1Þ _ζðtÞds; ð16Þ

Hence

_V1þα1V1r�
XN
i ¼ 1

γi=2ĉ
2þ

XN
i ¼ 2

λiðζi
T ðtÞð1=2ATP1þ1=2P1Aþα1P1þQ1ÞζiðtÞþζi

T ðtÞð1=2Ad
TP1þ1=2P1AdþP1BKÞζiðt�dðtÞÞ

þα1

XN
i ¼ 1

ci
2

2ηi
�ζi

T ðt�dðtÞÞe�α1d2 ð1�τÞQ1ζiðt�dðtÞÞþd2
_ζi

T
ðtÞR1

_ζiðtÞ�dðtÞe�α1d2

Z t

t�dðtÞ

_ζi
T
ðtÞR1

_ζiðtÞdsÞ: ð17Þ

Using Lemma 2, the following condition is achieved:

�dðtÞe�α1d2

Z t

t�dðtÞ

_ζi
T
ðtÞR1

_ζiðtÞdsr�e�α1d2 ðζiðtÞ�ζiðt�dðtÞÞTR1ðζiðtÞ�ζiðt�dðtÞÞ ð18Þ

Finally, from (17) and (18), applying Lemma 3 and Schur Complement, if the following inequality is satisfied:

1=2ATP1þ1=2P1Aþα1P1þQ1�e�α1d2R1 1=2Ad
TP1þ1=2P1Adþe�α1d2R1þd2Ad

TR1A AT Ad
T KTBT d2K

TBT AT

� �e�α1d2 ð1�τÞQ1
T �e�α1d2R1 0 0 0 0 0

� � �1=d2R1
�1 0 0 0 0

� � � �1=d2R1
�1 0 0 0

� � � � �1=d2R1
�1 0 0

� � � � � � I 0
� � � � � � �R1

�1

2
6666666666664

3
7777777777775
o0 ð19Þ
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We have

_V1þα1V1oα1

XN
i ¼ 1

ci
2

2ηi
�
XN
i ¼ 1

γi=2ĉ
2
; ð20Þ

or

V1o ðV1ðϕÞ�
1
α1

α1

XN
i ¼ 1

ci
2

2ηi
�
XN
i ¼ 1

γ=2ĉiĉiÞ
 !

e�α1tþ 1
α1

α1

XN
i ¼ 1

ci
2

2ηi
�
XN
j ¼ 1

γ=2ĉiĉi

0
@

1
A: ð21Þ

From (20), it can be concluded that system (7) with controller (8) is exponentially convergence with a
rate less than α1: We assume this rate is μ1: Hence, (20) can be rewritten as

_V1o�μ1V1�ðα1�μ1ÞV1�
XN
i ¼ 1

γi=2ĉ
2þα1

XN
i ¼ 1

ci
2

2ηi
; ð22Þ

On the other hand, based on the defined Lyaponov–Krasovskii functional, we have

1=2λ2λminðP1Þ‖ζ‖2rV1 ð23Þ
Hence

_V1o�μ1V1�
ðα1�μ1Þ

2
λ2λminðP1Þ‖ζ‖2�

XN
i ¼ 1

γi=2ĉ
2þα1

XN
i ¼ 1

ci
2

2ηi
; ð24Þ

Therefore, if

‖ζ‖2o 2
λ2λminðP1Þðα1�μ1Þ

: �
XN
i ¼ 1

γi=2ĉ
2þα1

XN
i ¼ 1

ci
2

2ηi

 !
ð25Þ

We reach

_V1o�μ1V1□: ð26Þ
Now, for the stability analysis of system in tkþ1rtrt2kþ2; we choose the following Lyapunov–Krasovskii functional:

V2 ¼ V21þV22þV23; ð27Þ
where

V21 ¼ ζT ðtÞðL � P2ÞζðtÞ

V22 ¼
Z t

t�dðtÞ
e�α2ðs� tÞζT ðsÞðL � Q2ÞζðsÞds

V23 ¼
Z 0

�dðtÞ

Z t

tþθ
e�α2ðs� tÞ _ζ

T ðsÞðL � R2Þ _ζðsÞdsdθ

Now we compute the time-derivative of V2ðtÞ
_V21 ¼ 1=2ζT ðtÞðL � P2AÞζðtÞþ1=2ζT ðtÞðL � P2AdÞζðt�dðtÞÞþ1=2ζT ðtÞðL � ATP2ÞζðtÞþ1=2ζT ðt�dðtÞÞðL � Ad

TP2ÞζðtÞ ð28Þ

_V22rζT ðtÞðL � Q2ÞζðtÞ�eα2d1 ð1�τÞζT ðt�dðtÞÞðL � Q2Þ � ζðt�dðtÞÞþα2V22; ð29Þ

_V23rd2 _ζ
T ðtÞðL � R2Þ _ζðtÞ�dðtÞeα2d1

Z t

t�dðtÞ
_ζ
T ðtÞðL � R2Þ _ζðtÞdsþα2V23; ð30Þ

Following the same steps of previous, if the following inequality is satisfied:

1=2ATP2þ1=2P2A�α2P2þQ2�eα2d1R2þd2A
TR2A 1=2Ad

TP2þ1=2P2Adþeα2d1R2þd2Ad
TR2A

� �eα2d1 ð1�τÞQ2
T �eα2d1R2þd2Ad

TR2Ad

" #
o0 ð31Þ

We have

V2o ðV2ðϕÞÞeα2t□: ð32Þ
The following theorem shows that the consensus of system (4) with F ¼ 0 can be guaranteed if there exist some matrices satisfying

certain matrix inequalities.

Theorem 1. . Consensus in MAS (4) and F ¼ 0 with control input (8) is satisfied for any time-varying delay dðtÞ satisfying d1rdðtÞrd2, if the
following conditions are met:

1. There exist positive define matrices P1;Q1;R1; P2;Q2;R2; such that the matrix inequalities (19) and (31) are satisfied.
2. There is ρ41 such that

ðP1;Q1;R1Þ4ρðP2;Q2;R2Þ;.
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3. There is δ40 such that
V1rðρþδÞV2

4. If Nf ail and Tf ail are defined the number of failures and the total time of failures of input signal intA t1; t2½ �; there exist α�4α40 such that

�μ1ðt�Tf ailÞþα2ðTf ailÞrα�t; ðρþδÞNfailðtÞreαt :

Proof. for proof we select the following switching Lyapunov–Krasovskii functional:

VðtÞr
V1ðtÞ if t2krtot2k�1

V2ðtÞ if t2kþ1rtot2kþ2
;

(
ð33Þ

From inequality (26), (32) we have:

VðtÞr
e�μ1ðt� t2kÞV1ðt2kÞ if t2krtot2k�1

eα2ðt� t2kÞV2ðt2kþ1Þ if t2kþ1rtot2kþ2
;

(
ð34Þ

For t0A t2k; t2kþ1
� �

VðtÞre�μ1ðt� t2kÞV1ðt2kÞre�μ1ðt� t2kÞV2ðt2k� Þre�μ1ðt� t2kÞðρþδÞðeα2ðt2k� t2k� 1ÞV2ðt2k�1ÞÞre�μ1ðt� t2kÞðρþδÞðeα2ðt2k� t2k� 1ÞV1ðt2k�1� ÞÞ
re�μ1ðt� t2kÞðρþδÞ2eα2ðt2k� t2k� 1Þðe�μ1ðt2k� 1� t2k� 2ÞV1ðt2k�2ÞÞÞr :::rðρþδÞke�α1ðt�Tf ailðtÞÞeα2ðTf ailðtÞÞVðϕÞ; ð35Þ

And for t0A t2kþ1; t2kþ2
� �

we have

VðtÞreα2ðt� t2kþ 1ÞV2ðt2kþ1Þreα2ðt� t2kþ 1ÞV1ðt2kþ1� Þreα2ðt� t2kþ 1Þððe�μ1ðt2kþ 1� t2kÞV1ðt2kÞÞr :::rðρþδÞkþ1e�μ1ðt�Tf ailðtÞÞeα2ðTf ailðtÞÞVðϕÞ ð36Þ
Finally, from (35) and (36) the proof is completed and we have:

VðtÞre�ðα��αÞtV ðϕÞ□: ð37Þ
Remark 2. . It is noted that inequality (19) provide stability criterion for the MAS (1). It depends on the bounds of the time-varying delay
of MAS. Hence, this result is less conservative compared to results in [40]. Moreover, our result is more favorable than other available
publications such as [42,43]. Here, exponential stability is guaranteed while some previous works such as [42,43] has discussed on
asymptotic stability of MAS. This enables one to check the exponential stability of MAS with a prescribed decay rate. Such criterion is more
practical in control field, because a fast response for a controlled system is often needed. This is especially true in controller failure cases
that may exist only a short availability controller time.

Remark 3. : In this section, we select a Lyapunov–Krasovskii functional with three terms. Generally, the main reason for this selection is to
choose a functional with minimum terms to simultaneously achieve less conservatism and minimal computational time. The first
objective is implemented through generating conditions that are dependent on the bounds of the time-varying delay of system. The
second one is achieved by minimizing the variables included in the functional to reduce the computation load. The latter objective is of
paramount importance for fault tolerant system with occasional failures, because the control signal availability might exist for only short
periods of time. This will limit the time allocated to controller gain computations and hence an efficient algorithm is necessary. This
subject calls for further research.

4.2. Injected false signal to control input in some intervals

Now, the assumption in Section 4.1 is further extended to include a non-zero fault value for each input. Hence, generalizing the
previous result, it is assumed that the fault function F in (3) has the following constrain:

‖f iðxi; tÞ‖rei‖xi‖; i¼ 1;2; :::N: ð38Þ
where ei is unknown. To control the system in such condition, we apply the following controller:

ui ¼ ciΚ
XN
j ¼ 1

aijðxj�xiÞþΘ ð39Þ

with

_ci ¼ ηi �γiciþ
XN
j ¼ 1

aijðxi�xjÞTΛ
XN
j ¼ 1

aijðxiðt�dðtÞÞ�xjðt�dðtÞÞ
0
@

1
A

2
4

3
5

_ei ¼ εi �κieiþ‖K
XN
j ¼ 1

aijðxi�xjÞ‖‖xi‖
2
4

3
5

Θ¼ �ei‖xi‖;

where εi; κi are positive scalars.
Similar to previous section, for the stability analysis of system in tkrtrt2kþ1; we choose the following Lyapunov–Krasovskii functional:

V3 ¼ V31þV32þV33 ð40Þ
with

V31 ¼ 1=2ζðtÞT ðL � P3ÞζðtÞþ
XN
i ¼ 1

ci
2

2ηi
þ
XN
i ¼ 1

~ei
2

2εi
;V32 ¼

Z t

t�dðtÞ
eα3ðs� tÞζT ðsÞðL � Q3ÞζðsÞdsV33 ¼

Z 0

�dðtÞ

Z t

tþθ
eα3ðs� tÞ _ζ

T ðsÞðL � R3Þ _ζðsÞdsdθ
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where ~ei ¼ ei�ei:
Now we compute the time-derivative of V3 :

_V31 ¼ _V11ðP3;Q3;R3ÞþζT ðL � P3BÞΘþ
XN
j ¼ 1

~ei �κieiþ K
XN
j ¼ 1

aijðxi�xjÞ ‖xi‖

3
5;

������
������

2
4 ð41Þ

We have

ζT ðL � P3BÞΘ¼ �
XN
j ¼ 1

ei‖xi‖ BTP
XN
j ¼ 1

lijζj

������
������ ð42Þ

Hence

_V31 ¼ _V11ðP3;Q3;R3Þþ
XN
j ¼ 1

~ei �κieiþ
XN
j ¼ 1

aijðxi�xjÞ ‖xi‖

3
5�XN

j ¼ 1

ei‖xi

������
������ BTP

XN
j ¼ 1

lijζj

������
������

������
2
4 ð43Þ

On the other hand:

XN
j ¼ 1

e
�

i �κieiþ
XN
j ¼ 1

aijðxi�xjÞ ‖xi‖

3
5�XN

j ¼ 1

ei‖xi‖

������
������BTP

XN
j ¼ 1

lijζj

������
������¼

XN
j ¼ 1

�κiei e
�

i�ei
XN
j ¼ 1

aijðxi�xjÞ
������

������‖xi‖:
2
4 ð44Þ

We define ƛ¼ ei
PN
j ¼ 1

aijðxi�xjÞ
�����

����� xi‖:k

Hence, if the following inequality is satisfied:

1=2ATP3þ1=2P3Aþα3P3þQ3�e�α3d2R3 1=2Ad
TP3þ1=2P3Adþe�α3d2R3þd2Ad

TR3A AT Ad
T KTBT d2K

TBT AT

� �e�α3d2 ð1�τÞQ3
T �e�α3d2R3 0 0 0 0 0

� � �1=d2R3
�1 0 0 0 0

� � � �1=d2R3
�1 0 0 0

� � � � �1=d2R3
�1 0 0

� � � � � � I 0
� � � � � � �R3

�1

2
6666666666664

3
7777777777775
o0

ð45Þ
We reach:

_V3þα3V3o�
XN
i ¼ 1

γi=2ĉ
2þα3

XN
i ¼ 1

ci
2

2ηi
þ
XN
i ¼ 1

κi=2 ~e
2�ƛ; ð46Þ

And similar to previous analysis (22)–(24)), for:

‖ζ‖2o 2
λ2λminðP3Þðα1�μ2Þ

:
XN
i ¼ 1

�γ=2ĉ2þα3

XN
i ¼ 1

ci
2

2ηi
þγ=2 ~e2�ƛ

1
A

0
@ ð47Þ

We have:

_V3o�μ2V3;μ2oα3□: ð48Þ
Now, for the stability analysis of system in tkþ1rtrt2kþ2; we choose the following Lyapunov–Krasovskii functional:

V4 ¼ V41þV42þV43 ð49Þ
where

V41 ¼ 1=2ζðtÞT ðL � P4ÞζðtÞ V42 ¼
Z t

t�dðtÞ
e�α4ðs� tÞζT ðsÞðL � Q4ÞζðsÞds V43 ¼

Z 0

�dðtÞ

Z t

tþθ
e�α4ðs� tÞ _ζ

T ðsÞðL � R4Þ _ζðsÞdsdθ

Now we compute the time-derivative of V4ðtÞ :
_V41 ¼ _V21þζT ðL � P4BÞF; ð50Þ

We have:

ζT ðL � P4BÞFr
XN
j ¼ 1

ei‖xi‖

�����
�����BTP

XN
j ¼ 1

lijζj

�����
����� ð51Þ

Hence:

_V41r _V21þ
XN
j ¼ 1

ei‖xi‖

�����
�����BTP4

XN
j ¼ 1

lijζj

�����
����� ð52Þ
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If the following inequality is satisfied:

1=2ATP4þ1=2P4A�α4P4þQ4�eα4d1R4þd2A
TR4A 1=2Ad

TP4þ1=2P4Adþeα4d2R4þd2Ad
TR4A

� �eα4d1 ð1�τÞQ4
T �eα4d1R4þd2Ad

TR4Ad

" #
o0 ð53Þ

We reach:

_V4�α4V4oƛ; ð54Þ

And finally for:

‖ζ‖2o 2
λ2λminðP4Þð�α4þμ3Þ

:ðƛÞ;μ3oα4 ð55Þ

we have:

_V4oμ3V4□: ð56Þ

The following theorem shows that the consensus of system (4) with fault as (38) can be guaranteed if there exist some matrices
satisfying certain matrix inequalities.

Theorem 2. . Consensus in MAS (4) and fault as (38) with control input (39) is satisfied for any time-varying delay dðtÞ satisfying d1rdðtÞrd2,
if the following conditions are met:

1. There exist positive define matrices P3;Q3;R3; P4;Q4;R4 such that the matrix inequalities (45), (53) are satisfied.
2. There is ρ41 such that

ðP3;Q3;R3Þ4ρðP4;Q4;R4Þ;.

3. There is δ40 such that
V3rðρþδÞV4

4. If we defineNfail the number of failures andTfail the total time of failures of input signal in tA t1; t2½ �; there exist α�4α40; such that

�μ2ðt�TfailÞþμ3ðTf ailÞrα�t; ðρþδÞNfailðtÞreαt :

Proof. Similar to previous proof and (45), (53).
5. Numerical simulation

In this section, a numerical example is given to verify our proposed Theorems. Note that this example has been discussed in [44];
however, we solve it including our stated constrains Fig. 1.

Example. Consider a network of linear MAS as follows:
_xi ¼ AxiþAdxiðt�dðtÞÞþBuiðt�dðtÞÞ; i¼ 1;2; :::;7 ð57Þ

With:

A¼

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 �0:2003 �0:2003 0 0
0 0 0:2003 0 �0:2003 0
0 0 0 0 0 �1:6129

2
666666664

3
777777775
;Ad¼

�1 0 0 �0:01 0 0
0 0 0 0 0:01 0
0 0 0 0 0:01 0
0 0 0:0003 0:0003 0 0
0 0 �0:0001 0 �0:0003 0
0 0 0 0 0 �0:005

2
666666664

3
777777775
;

Fig. 1. Communication graph of system (57).
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B¼

0 0
0 0
0 0
0:9441 0:9441
0:9441 0:9441
�28:7097 28:7097

2
666666664

3
777777775
; dðtÞ ¼ 0:3 sin ðtÞ

�� ��:

In this example, it is assumed that because of the controller failures, for instance packet loss of input signal in 0.15 of time intervals, the
control signal is zero until a new packet arrives. To reach the consensus in such condition, we use our obtained result in Theorem 1. At
first, we assume ρ;α1;α2 respectively as 1:021;0:33;0:32 to solve inequalities in (19) and (31). Applying free weighting matrix (FWM)
algorithm for solving the matrix inequality in (19) with three unknown variables, the gain of controller (8) for satisfying Theorem 1 is

K ¼ 6:8017 �6:146 �0:65543 6:81646 �5:279 �0:07198
6:146 11:8567 0:6554 �5:2479 6:81646 0:07198

	 

;

Also, using Matlab LMI Toolbox, we can conclude that the obtained LMI in (31) with selected decay rate is feasible. Hence, by Theorem
1, it can be deduced that the consensus problem for system (57) can be solved. Result of the simulation of closed-loop system (Figs. 2–7)
shows that we could solve the consensus problem in this example with our proposed controller. It should be noticed according to Theorem
1 selecting α¼ 0:12;α� ¼ 0:23 the maximum value of Tf ail=t2�t1 with the above assumption is 0.27 which determines the allowable time
limit of packet loss. Also, with these values of exponential rates, the maximum value for the upper bound of system delay and maximum
number of controller failures in this interval are 0.471 and 6.17 respectively.

Now we want to evaluate our result in Theorem 2. In this case, we assume the system (57) with a change that in 0.15 of time intervals
the false input signal is injected instead of the true input signal by attacker until the true data arrives. This fault is presented as follows:

f ðxiÞ ¼ 0:34 sin ðxiÞ; ð58Þ
Assuming ρ;α1;α2 respectively as 1:021;0:33;0:32, and following the same approach as above, the gain of controller in (39) for

satisfying Theorem 2 is

K ¼ 8:529 12:16 �1:2966 13:4846 �10:3818 �0:1424
25:800 1:3587 0:323 �11:0157 14:828 0:376

	 

;
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Fig. 2. The behaviors of the x1i ; i¼ 1; :::;7 in the controlled system (57).
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Fig. 3. The behaviors of the x2i ; i¼ 1; :::;7 in the controlled system (57).
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Fig. 4. The behaviors of the x3i ; i¼ 1; :::;7 in the controlled system (57).
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Fig. 5. The behaviors of the x4i ; i¼ 1; :::;7 in the controlled system (57).
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Fig. 6. The behaviors of the x5i ; i¼ 1; :::;7 in the controlled system (57).
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Result of the simulation of closed-loop system (Figs. 8–13) shows that we could solve the consensus problem between agents in this
case with our proposed controller. Similar to previous discuss for packetloss, it should be noticed that according to Theorem 2 selecting
α¼ 0:12;α� ¼ 0:23 the maximum value of Tf ail=t2�t1 with the above assumption for system (57) with fault (58) is 0.26 which is the total
time of allowable attack.

Also, with these values of exponential rates, the maximum value for the upper bound of system delay and maximum number of
controller failures in this interval respectively are 0.314 and 4.13.
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Fig. 9. The behaviors of the x2i; i¼ 1; :::;7 in the controlled system (57) with fault (58).
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Fig. 8. The behaviors of the x1i ; i¼ 1; :::;7 in the controlled system (57) with fault (58).
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Fig. 7. The behaviors of the x6i ; i¼ 1; :::;7 in the controlled system (57).
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Fig. 12. The behaviors of the x5i; i¼ 1; :::;7 in the controlled system (57) with fault (58).
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Fig. 10. The behaviors of the x3i ; i¼ 1; :::;7 in the controlled system (57) with fault (58).
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Fig. 11. The behaviors of the x4i ; i¼ 1; :::;7 in the controlled system (57) with fault (58).

M. Fattahi, A. Afshar / Neurocomputing 189 (2016) 11–2422



0 1 2 3 4 5 6

-0.14

-0.135

-0.13

-0.125

-0.12

-0.115

Time(sec)

x6
i,i
=1
,..
.,7

Fig. 13. The behaviors of the x6i; i¼ 1; :::;7 in the controlled system (57) with fault (58).
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It should be emphasized that the appropriate value of ρ;α1;α2 for the required calculations is obtained by trial and error method.
6. Conclusions

This paper studied the distributed consensus problem of linear dynamical multi-agent systems with missing control input in some
intervals and also delays in the transmission of control input to agents. At first, assuming zero control input in some intervals and delay,
the model of system in such conditions was formulated. Then, a distributed adaptive controller based on the relative states of neighboring
agents was proposed. By constructing a set of switching Lyapunov–Krasovskii functional, a delay-dependent exponential consensus cri-
terion with explicitly exponential convergence rate was established. Furthermore, the obtained condition was extended to the multi-agent
system, when a false signal was injected instead of the nominal control signal. Finally, an illustrative example was solved to show the
advantage of the proposed approach. Future possible research directions in this area will be considering fault tolerant of MAS with
switching directed topologies and multiple time-varying delays.
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