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The influence of Ohmic-vacuum heating on phenol, ascorbic acid and 

engineering factors of kiwifruit juice concentration process

Abstract

The antioxidant, phenol, ascorbic acid, electrode corrosion and engineering factors of 

concentration process of kiwifruit juice by ohmic heating-vacuum conditions (OHVC) 

was evaluated and compared with ohmic heating under atmospheric conditions (OHAC). 

Results showed that the total phenol content was decreased with an increasing voltage 

gradient for both heating modes. The OHVC can better save the antioxidant capacity and 

ascorbic acid of concentrated samples than the OHAC. The processing time of OHVC 

was significantly higher than the OHAC at the same voltage gradient (p < 0.05). The 

electrode corrosion rate at the vacuum mode was 7 to 40- fold higher than the 

atmospheric mode. The energy efficiency at OHAC was lower than the OHVC. The 

energy consumption was found in the range of 3.37 to 3.75 MJ/kg water for OHAC and 

4.08 to 11.09 MJ/kg water for OHVC. The electrical conductivity under the vacuum 

mode was lower than the atmospheric mode.

Keywords: Ohmic-vacuum heating; energy consumption; antioxidants; corrosion; 

kiwifruit juice

Introduction

Kiwifruit juice has a multi-nutrient source of vitamins, polyphenols, antioxidants, and 

minerals which encouraged its industrials utilization (Cassano et al., 2008; Wang et al., 

2019). Once harvested, kiwifruit needs to be kept at low temperatures and such storage 

entails energy costs and appropriate facilities (Atak and Goksel, 2014). Consequently, it 

is needed to further expanding kiwifruit processing to get longer shelf life. Processed 

products are mainly juice and juice concentrate. Also, the concentration of the fruit juices 

strongly reduces microorganism's growth and costs of packaging, delivery, and storage 

(Cassano and Drioli, 2007). The production of high-quality concentrated juice is affected 

by a number of factors including boiling point, heat transfer rate, processing time, energy 

consumption, and pressure. Conventional heating is a common method in food processing 

industries. Due to lower heat transfer coefficients of food materials, the processing time is 

long and resulted quality loss and high energy consumption during conventional heating A
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(Ahmad et al., 2019; Fadavi et al., 2018). To overcome these problems, the emerging 

techniques for the concentration process should be developed.

Ohmic heating, which is converting electrical energy to thermal energy, provides a rapid 

and homogeneous heating in foods (Gavahian, et al., 2019). Along with the principal 

advantages, the participation of no hot surfaces, high efficiency and probability of control 

slurries with high solid contents, no need for vapor and water are other rewards of ohmic 

heating (Cokgezme et al., 2017). 

Applying vacuum system for the evaporation process avoids excessive increasing of 

boiling temperature through the proceeding of concentration and decreases thermal 

damage to nutrients, color, and quality of the product (Assawarachan and Noomhorm, 

2011; Fadavi et al., 2018). A combination of ohmic and vacuum for the  concentration of 

juices might have double effect on decreasing time and boiling temperature of the 

process, which gives raise to energy-saving and cause less quality loss. Recent studies on 

combined ohmic-vacuum heating were done under low vacuum pressure. Fadavi et al. 

(2018) discovered that ohmic heating couples with vacuum (P = 40 kPa) had noteworthy 

effect on the quality of concentrated tomato. Darvishi et al. (2019) reported that hybrid 

ohmic-vacuum heating had better effect on the sustaining vitamin C, total phenol content, 

and antioxidant capacity of orange juice due to lower processing temperature and reduce 

oxygen accessibility. Conversely, Sabanci et al. (2019) reported that degradation of 

phenolic and anthocyanin contents of evaporated juice was higher during the running of 

the ohmic-vacuum process at lower voltage gradients (7.5 - 12.5 V/cm).

According to the best knowledge of the authors in the open literature, no investigation 

was found on the electrode corrosionin the vacuum state and behavior of kiwifruit juice 

during the ohmic heating process at atmospheric or vacuum state. Therefore, the aims of 

this study were (1) to evaluate the effect of ohmic heating under vacuum and atmospheric 

conditions on theprocessing kinetics, electrical conductivity, energy consumption and 

performance, electrode corrosion rate, and quality parameters (phenol content, 

antioxidant activity, and ascorbic acid), and (2) to study the variations of the electrical 

conductivity as a function of pressure, phase heating, water content, and temperature of 

the juice sample during the concentration process.

2. Materials and methods

2.1. Sample perpetrationA
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The samples of fresh kiwifruit were obtained from a local fruit market in Sanandaj, Iran. 

Samples were washed with tap water, peeled, and then the juice extracted using a juice 

extractor (Sunny Co., China). Immediately after filtering the juice, the concentration 

process was started. The total soluble solids (TSS) and moisture content of fresh and 

concentrated samples were measured using a refractometer (ATAGO, Japan) at 20 °C and 

drying oven (Memmert, Germany) at 103 °C. The TSS and moisture content of fresh 

sample were obtained as 14.33 ± 0.58 ºBrix and 85.31± 0.56% wet basis, respectively.

2.2. Heating setup

The schematic diagram of the ohmic -vacuum heating setup is shown in Fig. 1. The 

experimental setup consists of a Pyrex glass cell (rectangular cube: 15 cm height; 10 cm 

width; 10 cm length, two 316L stainless steel electrodes with 2 mm thickness and 10 cm 

gap between them, a voltage regulating transformer (1 kW, 0–330 V, 50 Hz, MST–3, 

Japan), three coated type-K thermocouples, a power analyzer (Dina Co, Iran), a vacuum 

pump (Platinum DV-42N, USA), a buffer tank to damp the pulsation of pump operation, 

a vacuum gage, a digital balance (FX-3000i model, A&D, Japan) with an accuracy of ± 

0.01 g for mass determination, a microcontroller, and a personal computer. The 

temperature, sample mass, current, and voltage were recorded in 1 s time intervals. The 

heating process was carried out in two ohmic heating modes of operation (1) under 

vacuum (OHVC) and (2) atmospheric conditions (OHAC) at four different voltage 

gradients (15, 20, 25, 30 V/cm). The altitude of the laboratory, place of experiments,is 

about 1459 meters above sea level and the boiling temperature of tap water is 92.7 ± 0.5 

ºC in the laboratory which means that the ambient pressureis less than 101.3 kPa. About 

100 g of kiwifruit juice was poured into the cell in each run treatment. Before starting any 

treatment, the vacuum pump was worked about 2 min to stabilize the state (12.3 kPa 

absolute pressures) on the surface of the juice sample. The ohmic cell was washed with a 

toothbrush and distilled water after each experiment. The concentrating process was 

continued until TSS of sample reached around 60.67 ± 1.50 ºBrix (or water content of 

samples reached to 39.21 ± 1.27% wet basis). The concentrate samples were keptat 4 °C 

about 24 h for further biochemical analysis.

2.3. Electrical conductivity

The electrical conductivity was calculated as (Fadavi et al., 2018):A
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σ =
I × L
V × A                                         (1)

where σ is the electrical conductivity (S/m), I is the electrical current passed from the 

sample (A), V is the electrical voltage (Volte), L is the gap between two electrodes (m), 

and A is the contact surface between the juice sample and electrode (m2). The contact 

surface reduced during the evaporation process. Therefore, the contact surface was 

computed as follows (Fadavi et al., 2018; Darvishi et al., 2015):

A =
mt

ρt × L                              (2)

Where A is the contact surface between sample and electrode (m2), mt and ρt are the 

sample mass (kg) and sample density (kg/m3) at any time of heating process, respectively.

2.4. Electrode corrosion rate

The concentration of Fe migrated into the sample was taken as measures of electrode 

corrosion for the stainless steel electrode. The complete details of sample perpetration for 

measuring trace metal concentration in juice samples was described by Gad and Jayaram 

(2014). The analytical equipment used in this study is an Inductively Coupled 

PlasmaAtomic Emission Spectrometer (ICP-AES) with a radial configuration. The 

corrosion rate by the average flux of Fe ions was calculated as follows:

ECR =
Cmi

t                         (3)

Where ECR is the electrode corrosion rate (ppb/s); t is the heating time (s), and Cmi is the 

actual concentration of Fe (ppb) released from the electrodes into the solution during OH 

was evaluated as the difference between the concentrations measured in heated and 

unheated samples.

2.5. Energy consumption and performance

The energy consumption was calculated as follows (Cokgezme et al., 2017):

E = Pvp × ton + ∑(VI × ∆t)                      (4)

where E is the energy consumption (J), Pvp is the power consumption (W) of the vacuum 

pump, ton is the time (s) of switched on of the vacuum pump, I is the electrical current 

passed from the sample (A), V is the electrical voltage (Volte), and Δt is the time interval 

for measuring current and voltage (s).

The performance of heating system was calculated as (Hosainpour et al., 2015):A
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η = (m0Cp∆T + mwhgf

E ) × 100                    (5)

where m0 is the initial mass of sample (kg), Cp is the specific heat capacity (J/kg K), ΔT 

is the difference temperature of sample (ºC), mw is the mass of water evaporation (kg), hgf 

is the latent heat (J/kg), and η is the energy efficiency of heating system (%).

2.6. Ascorbic acid measurement

AA of samples was extracted by homogenization of 0.5 mL juice sample in 1 mL 5% 

metaphosphoric acid (MA). AA was measured in prepared sample according to Koushesh 

Saba and Moradi (2016) as follow: 500 μL of extracted sample or AA calibration 

solutions were added to 500 μL  10% MA, 300 μL of citrate buffer (pH 4.2), and 300 μL 

of the 2,6-dichloroindophenol (DCIP) (0.1 mg mL-1). After 30 min, the absorbance was 

read using spectrophotometer (Unico, UV ‐ 2100, USA) at 510 nm. The AA data were 

stated as mg ascorbic acid per 100 mL of kiwifruit juice using standard curve obtained by 

calibration solutions. 

2.7. Total phenol content measurement

 Sample extraction was carried out by homogenization of 1 mL kiwifruit juice in pre-cold 

solution (distilled water – HCl-methanol, 19-1-80% v/v) flowed by centrifugation at 4 ºC 

for 20 min at 11000 g. Total phenol content (TPC) in the supernatant was measured 

according to the Folin–Ciocalteu (Singleton et al., 1999), and gallic acid was applied for 

the standard curve. The TPC data were stated as mg gallic acid per 100 mL of sample 

(Koushesh Saba and Amini, 2017).

2.9. Antioxidant capacity measurement

Antioxidant capacity (AC) was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

radical-scavenging method according to Sánchez‐Moreno et al. (1999). The absorbance 

was measured at 517 nm, using a spectrophotometer. AC was determined using the 

following equation: 

AC =
ABc– ABs

ABc
× 100                        (6)

Where ABc and ABs are the absorbances at 517 nm of the control and sample, 

respectively, and AC is the antioxidant capacity (%); 

2.8. Statistical analysisA
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A 2×4 factorial design was used to plan and perform the experiments. All experiments 

and measurements were performed in triplicate and are reported as mean and standard 

deviation. The statistical evaluation (ANOVA and Duncan test) was performed by using 

SPSS V.18 software at the 5% significance level. Microsoft Excel software was used to 

plotting 2D view of the results.

3. Results and decision

3.1. Engineering parameters

The temperature of juice sample is shown in Fig. 2 during the heating process. The 

sample temperature rose to 94.5 ± 0.3ºC for OHAC and 50.5 ± 0.7 °C for OHVC and 

stayed constant until the end of the concentration process. As can be seen, the sample 

temperature at the vacuum mode is 44 ºC lower than the atmospheric mode during 

evaporation. The processing time varied between 220 - 934 s for OHAC and 380 – 1446 s 

for OHVC (Table 1). The processing time of OHVC was significantly higher than the 

OHAC at the same voltage gradient (p < 0.05). The reason for higher processing time at 

vacuum mode is the electrical current (Fig. 3) through the sample during heating that was 

very lower than the atmospheric mode. Therefore, the generated energy in OHVC is 

lower than OHAC which leads to a decline in the evaporation rate. The result of this 

phenomenon was an increase in processing time. The reason for the low electrical current 

passing through sample at OHVC can be attributed to the rate of bubbles expansion 

(Fadavi et al., 2020; Fadavi and Salari, 2019). The effect of vacuum decreases the 

pressure difference inside and outside the bubbles, therefore, bubbles expansion will be 

more rapid and as a result their escape from the surface of media is facilitated, 

interrupting the passage of current through the sample (Fadavi and Salari, 2019). Also, it 

could be noted that the sample heat capacity and latent heat of vaporization were a 

function of the pressure inside the heating chamber. It has been noted that in lower 

pressure inside the heating chamber, the heat capacity of the sample decreased while the 

latent heat of vaporization increased (Thermexcel, 2019). The latent heat of water 

vaporization in vacuum mode was 118 kJ/kg higher than the atmospheric mode (hgf = 

2375 kJ/kg in 12.3 kPa, and hgf = 2256 kJ/kg in ambient pressure). It means that the 

sample needed more energy for water evaporation in vacuum mode. This energy (Δhgf = 

118 kJ/kg) generated with a slow rate at the vacuum mode due to the lower electrical 

current through the sample and finally has resulted in a lower water evaporation rate and A
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higher processing time. The processing time decreased with increasing of voltage 

gradient for both heating modes (p < 0.05). When the samples were subjected to a higher 

voltage gradient, the high energy generation increased the activity of the water molecules 

and led to an increase of the evaporation rate and decreased the processing time (Darvishi 

et al., 2020; Fadavi et al., 2018).

3.2. Electrical conductivity 

Variations of the electrical conductivity as a function of heating conditions are shown in 

Fig. 4. The changes in electrical conductivity at OHAC were different than OHVC. At 

atmospheric mode, the electrical conductivity increased from 0.60 to 1.67 S/m with 

increasing sample temperature from 26.0 ºC until boiling point due to reduced drag for 

the movement of ions. As the boiling process begins, the electrical conductivity drops 

sharply due to the gas bubbles formation (e.g. H2 or O2 gas due to the electrolysis 

reaction) which worked as electrical insulation (Darvishi et al., 2019; Samaranayake and 

Sastry, 2005). The intensity of drop in electrical conductivity increased with raising 

voltage gradient due to higher boiling rates. According to Fig. 4, the electrical 

conductivity increased with decreasing water content of the juice sample during the 

evaporation process (especially at higher voltage gradient) due to an increase of ions 

concentration in the juice sample. Darvishi et al. (2015) found that the moisture content 

had more effect on the electrical conductivity of tomato juice than the temperature 

especially at high concentrations at atmospheric pressure. They also reported that there 

was no insignificant effect of the voltage gradient on the electrical conductivity. Boldaji 

et al. (2015) showed that increasing the voltage gradient led to a decrease in the electrical 

conductivity of tomato paste which could be due to the increasing rates of vapor 

formation at higher voltage gradient at atmospheric conditions.

At vacuum mode (Fig. 4), the electrical conductivity increased at the initial few seconds 

of heating, and then it decreased with increasing sample temperature until 46 ± 1.5 ºC 

during the warming up period. Although the boiling process was clearly observed at 50.5 

± 0.7 °C, the boiling action had no effect on the electrical conductivity. Unlike 

atmospheric conditions, the boiling process did not decrease the electrical conductivity 

and electrical current passed from the sample. During the evaporation period, the 

electrical conductivity increased with decreasing water content of the juice sample for 

OHVC as in the OHAC mode. The values of electrical conductivity at OHAC were A
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higher than OHVC at the same water content. The electrical conductivity varied between 

0.5 – 1.8 S/m for OHAC and 0.30 – 0.88 S/m for OHVC. 

3.3. Electrode corrosion rate

According to statistical analysis, the pressure and voltage gradient were significant effects 

on the electrode corrosion rate (p < 0.05). The electrode corrosion rate was obtained in 

the range of 19.27 – 426.11 ppb/s for OHVC, and 0.48 – 61.58 ppb/s for OHAC (Table 

1). The electrode corrosion rate at OHVC was 7– 40–fold higher than OHAC. The higher 

corrosion rate at the vacuum mode was probably due to the lower current density in the 

OHVC relative to the OHAC. It should be noted that the use of OHVC for a long time 

causes more corrosion of the electrodes rather than the values reported in this study. So, 

the accumulation of metals in the concentrated samples may have an adversely effect on 

the health of consumers. According to the literature review (Wu et al., 1998; Reznick, 

1996), the corrosion rate could be reduced by increasing current density. It was also 

observed that the electrode corrosion increased with increasing voltage gradient for both 

heating mode. These results agree with the fact that the rate of charge transfer through the 

electrode-solution interface is strongly related to the applied potential (Stancl and Zitny, 

2010;Pataro et al., 2014). Lima et al. (1999) reported that by using stainless steel 

electrodes, iron concentration in orange juice increased during Ohmic heating. This trend 

can be explained bearing in mind that under alternating current when the polarity of the 

potential is reversed, the electrode solution interface behaves like a capacitor which 

charges and discharges according to the frequency (Amatore et al., 1998). Thus, the use 

of low-frequency current signal may determine the full charging of the electrodes double 

layer up to exceeding the threshold value corresponding to the onset of electrode 

reactions. This will cause electrode corrosion and an increased metal release into the 

solution and, hence, food contamination (Amatore et al., 1998).

3.4. Energy consumption and performance

According to Table 1, the energy consumption varied from 3.41 to 3.75 MJ/kg water for 

OHAC and 4.08 to 11.09 MJ/kg water for OHVC. The energy consumed at the vacuum 

mode was 0.68 – 7.34 MJ/kg water higher than the atmospheric mode at the same voltage 

gradient. At vacuum mode, the energy consumed by vacuum pump was 59% to 81% of 

total energy consumption. The energy consumption by the ohmic heater was 2.06 MJ/kg 

water for 15 V/cm, 1.84 MJ/kg water for 20 V/cm, 1.76 MJ/kg water for 25 V/cm, and A
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1.68 MJ/kg water for 30 V/cm. The energy consumption decreased with increasing 

voltage gradient (p < 0.05) due to the reduction of processing time. Hosainpour et al. 

(2015) reported energy consumptionreduced about 1.6-fold by increasing the voltage 

gradient from 6 to 16 V/cm during ohmic concentration of tomato paste at atmospheric 

pressure due to increasing salt concentration in juice samples. Darvishi et al. (2020) 

showed that the voltage gradient had no significant effect on energy consumption (p > 

0.05) of the ohmic concentration process of grape juice at atmospheric pressure although 

processing time reduced about 3–fold by increasing the voltage gradient from 15 to 30 

V/cm. 

The energy efficiency calculated in the range of 71.83 – 80.07% for OHAC and 22.38 – 

60.87% for OHVC (Table 1). The energy efficiency of OHAC was 18.30 –49.59% higher 

than OHVC. The reasons for lower energy efficiency at vacuum mode can be due to the 

high energy consumption by the vacuum pump and the low energy generation in the 

sample due to the low electrical conductivity of the sample. Similar to our results, Icier 

(2003) reported that the energy efficiency of OHAC for the liquid samples was in the 

range of 47 – 92%. Cokgezme et al. (2017) reported that the energy efficiency of the 

concentration process of pomegranate juice using OHVC was varied between 23.94- – 

55.12%. Darvishi et al. (2015) reported that the average energy efficiency of tomato paste 

production using OHAC was increased from 67.07 to 85.50% with increasing voltage 

gradient (6 to 16 V/cm).

3.5.Ascorbic acid

The effect of heating conditions on the quality of concentration kiwifruit juice is shown in 

Fig. 5. Results showed that the AA content of concentrated samples was lower than the 

fresh juice (370.9 ± 23.6 mg AA/100 mL). Generally, the heating process reduced the AA 

content in fruit juice because vitamin C is sensitive to heat and environmental conditions 

(Hashemi et al., 2019). AA declines in OHVC treatments were lower than OHAC (p < 

0.05). The vitamin C is easily destroyed by heating and oxidized in the presence of air 

(El-Ishaq and Obirinakem, 2015). The greater level of AA in OHVC might be the effect 

of vacuum state that decreased boiling point temperature and air (reduce oxygen 

availability) inside the ohmic cell thus might induce lower decomposition of vitamin C 

(Darvishi et al., 2019). It can also be stated that the solubility of gases in the sample at 

OHAC decreases with increasing temperature. While the rate of ascorbic acid degradation A
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augmented with increasing temperature from 61 – 92 °C (Laing et al., 1978; Kadakal et 

al., 2017). The increase in voltage gradient led to a less AA decrease, which might be 

because the duration of processing facilitated the degradation of AA. 

3.6. Total phenol content

TPC of concentrated juices was lower than fresh kiwifruit juice. TPC of concentrated 

juices using OHVC was lower than OHAC at the same voltage gradient (Fig. 5A). As 

stated, the processing temperature in the OHVC was 44 ºC lower than OHAC during the 

evaporation period, but the longer processing time in the OHVC might cause higher TPC 

decline. Also, TPC decline increased with increasing voltage gradient for both heating 

modes. The rate of corrosion and electrochemical changes increased with increasing 

voltage gradient (Pataro et al., 2014) resulting in a decrease in total phenol content.

3.7. Antioxidant capacity

The antioxidant capacity (AC) of treated samples was lower than the fresh sample (p < 

0.05). However, the AC of samples treated using OHVC (82.69 – 84.39%) was higher 

than OHAC (78.37 – 83.37%) at the same voltage gradient (Fig. 5C). The temperature 

and duration of the process are two important factors on the change of quality parameters 

of fruit juice during the concentration process (Jayathunge et al., 2019). The process 

temperature in the OHVC was much lower than OHAC, but the processing time in the 

vacuum state was longer. It could be concluded that the effect of sample temperature on 

the reduction of AC was greater than the effect of the process duration. The higher AC in 

OHAC also could be explained by the AA level as high correlation has been reported 

between AC and AA in kiwifruit cultivars (Park et al., 2011).

4. Conclusion

Kiwifruit juice was concentrated via ohmic heating at atmospheric and vacuum 

conditions. Results showed that the high vacuum pressure showed a negative effect on the 

processing time, electrode corrosion, energy consumption, thermal efficiency, phenol 

content and electrical conductivity of the juice samples. The combined of vacuum 

pressure and high gradient voltage can more preserve the antioxidant capacity and 

ascorbic acid of concentrated samples. According to the results, the use of OHVC under 

high vacuum is not recommended because it is associated with increasing processing 

time, corrosion of electrodes, and energy consumption and decreasing the total phenol 

content. Consequently, it is recommended to use an ohmic heating system at atmospheric A
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pressure or a combination of ohmic heating with low vacuum. Also, it is suggested that 

the effect of vacuum level on the different aspects of concentration process be optimized 

in future studies by researchers.
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Table 1 Average values of processing time, energy consumption, energy efficiency and corrosion rate at different heating conditions  

∇V 

(V/m) 

Processing time (s) 
 

Energy consumption 

 (MJ/kg water) 
 Energy efficiency (%) Corrosion rate (ppb/s) 

OHAC OHVC 
 

OHAC OHVC  OHAC OHVC OHAC OHVC 

15 934 (±5)
b 

1446(±15)
a 

 
3.75(±0.05)

e 
11.09(±0.10)

a  
71.83(±0.05)

c
 22.38(±0.15)

g 
0.48(±0.05)

h
 19.27(±1.36)

e 

20 505 (±3)
e 

848(±10)
c 

 
3.46(±0.04)

f 
7.11(±0.07)

b  
77.99(±0.98)

b 
34.93(±0.32)

f 
7.20(±0.03)

gf 
140.95(±29.20)

c 

25 312 (±15)
g 

578(±5)
d 

 
3.37(±0.08)

f 
5.37(±0.05)

c 
 80.07(±0.81)

a 
46.23(±0.27)

e 
9.15(±2.52)

f 
189.76(±5.33)

b 

30 220 (±5)
h 

380(±11)
f 

 
3.41(±0.07)

f 
4.08(±0.08)

d 
 79.17(±0.44)

a 
60.87(±1.23)

d 
61.85(±8.00)

d 
426.11(±54.70)

a 

a–h
 Different superscripts in the same parameter indicate significant differences (P< 0.05)  
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Figure 1 Schematic diagram of the ohmic –vacuum heating system 
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Figure 2 Sample temperatures (± standard deviation) during concentration process as function of heating 

conditions 
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Figure 3 Variations of electrical current (± standard deviation) through the sample at different heating 

conditions 
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Figure 4 Variations of electrical conductivity at different heating conditions 
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Figure 5 Effect of heating conditions on quality of concentrated kiwifruit juice (Since 54% water content of fresh 

sample was evaporated, the values of AA, AC, and TPC of concentrated sample should be multiplied at 0.54 

by readers to comparison results at the same moisture content between fresh and concentrated samples). 

The quality parameters of fresh sample are AC = 86.24 ± 0.80 (%); TPC = 1200 ± 37.2 (mg GAE/100 mL); AA = 

370.93 ± 23.56(mg AA/100 mL). 
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