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 Nomenclature   
   Greek Symbols 

A heat transfer area (m2) ∆T logarithmic mean temperature difference(oC)    
Cp specific  heat (kJ kg-1 °C-1) thermal diffusivity (m2/s) 
D tube  diameter (m)  density (kg m-3) 

d nanoparticle  diameter (m) Kinematic viscosity (m2/s) 
h convective heat  transfer coefficient 

 (W m-2 oC-1) 
φv nanoparticle volume concentration  

(Dimensionless) 
k thermal  conductivity (W m-1 oC-1)  Subscripts 
L tube  length (m) f fluid 
mo mass  flow  rate (kg s-1) i inside 
Nu Nusselt  number (Dimensionless) in inlet 
Pe Peclet    number (Dimensionless) m mean 
Pr Prandtl   number (Dimensionless) nf nanofluid 
Q Heat  transfer  rate (W) o outside 
Re Reynolds  number (Dimensionless) out outlet 
T Temperature (℃) p particles 
U  overall  heat  transfer  coefficient (W m-2 oC-1) w wall 
V Velocity (m.s-1)   

 
channels have shown a two flow reduction in thermal 
resistance [6] and dissipate heat power three times 
more than that of pure water. Studies conducted using 
water-Cu nanofluids [7] of concentrations 
approximately 2% by volume was shown to have a 
heat transfer coefficient 60% higher than when pure 
water was used. Such advances must have a broader 
impact culminating in promoting teaching, training 
and learning. Dissemination of research results will 
enhance the scientific and technological understanding 
of nanotechnology. This effort aims at bringing 
nanotechnology to the undergraduate level, especially 
at the applied level in engineering and technology 
curricula. The focus is to incorporate nanotechnology 
into existing course curricula such as heat transfer and 
fluid mechanics. The intention of the work described 
here is to introduce a simple experimental procedure 
in a heat transfer course to facilitate the understanding 
of the convective heat transfer behavior of nanofluids. 
    He et al [8] reported an experimentally study that  
investigated the heat transfer performance and flow 
characteristic of TiO2-distilled water nanofluids 
flowing through a vertical pipe in an upward direction 
under a constant heat flux boundary condition in both 
a laminar and a turbulent flow regime. Their results 
showed that at a given Reynolds number and particle 
size, the heat transfer coefficient raised with 
increasing nanoparticle concentration in both laminar 

and turbulent flow regimes. Similarly, heat transfer 
coefficient was not sensitive to nanoparticle size at a 
given Reynolds number and particle size. Moreover, 
the results indicated that the pressure drop of the 
nanofluids was very close to that of the base fluid. 
 
2. Experimental  
2.1. Experimental setup 
 
    The apparatus employed in this work is schemed in 
figure1 the device comprises: a test chamber, two 
storage tanks, two magnetic gear pumps; one to 
circulate Nano-Fluid (NF) known as 'hot fluid' while 
the other to pump cooling fluid in a loop. The test 
chamber is a double tube counter current heat 
exchanger 120 cm long. The Nano-Fluid (NF) flows 
inside the tube while cooling fluid (water) flows 
through the outer tube. The inner tube made from soft 
copper 6 mm ID. and 8 mm OD. The outer tube made 
from steel 14 mm ID. and 16 mm OD. Plastic 
insulator is used for the upper and lower sections of 
the test chamber to reduce the heat loss. The test 
chamber equipped with four thermometers located at 
the input and output streams of both hot NF and 
cooling fluid. The two storage tanks each 15 and 20 
liters volume made from stainless-steel and plastic to 
store hot NF and cooling water. 
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coefficient may attribute to the higher concentrations 
of nano-particles adjacent to the wall caused by 
particle migration phenomenon. The momentum of 
suspended particles increases as the NF mass flow rate 
increases. Accordingly, the collision of nano-particles 
to the wall become even more intense. Friction to the 
wall as a function of wall surface properties and NF 
characteristics may need to study. Further research is 
required to better understanding the NF heat transfer 
properties and develop more relations.  

 
4. Conclusions 
 

Experimental results showed that the addition of 
nano-particles in the fluid, the average heat transfer 
coefficient of the system increases the turbulent flow 
regime. Particle shape, density and surface properties 
of nanoparticles are key factors to improve the heat 
transfer characteristics of nano-fluids. This increases 
the heat transfer coefficient may be due to the high 
density of nano particles on the pipe wall is due to 
immigration. The heat transfer characteristics of nano-
fluids for greater recognition and extensive research is 
needed to obtain other relations.The intensity of the 
collision of particles in nano fluid with an increase in 
the fluid mass flow is more that this would strongly 
deal with the exchanger walls also increases the 
friction as well as according to the type of nano-fluid 
and the properties of the walls of the heat exchanger 
can be determined. 

In general add nano particles by using three 
mechanisms will increase heat transfer: 

A) Nano particles have higher heat guide and the 
higher density of particles more increase in transfer of 
heat as a result. 

b) Nano particles with fluid molecule based on 
the wall and turned into heat and the cause of increase 
in energy. 

c) Nano fluid friction between fluid and the wall 
tube increased and will improve heat exchange. 

The intensity of the collision of particles in nano 
fluid with an increase in the fluid mass flow is more 
that this would strongly deal with the exchanger walls 
also increases the friction as well as according to the 
type of  nano-fluid and the properties of the walls of 
the heat exchanger can be determined. 

One reason for this difference in heat transfer at 
high Reynolds numbers, the high viscosity of nano-
rod fluid. In general, the fluid containing rod-shaped 
particles, due to severe reactions have high viscosity 
and high density in shear flow. So this is also one of 
the factors reducing heat transfer to the rod-shaped 
nanoparticles are spherical mode.  

In this experiment, the spherical shape of the 
nanoparticles have been studied. Particle 
concentration and movement of particles in the flow 
of other factors that affect the heat transfer. Nano-
Fluid is assumed that the main mechanism for 
increasing the thermal conductivity of nanoparticles is 
a transitional move. The mobility of smaller particles 
than for larger particles predicted and therefore 
increase the coefficient of thermal conductivity of 
nanofluids by the finer particles than coarse particles.  

Nanofluids flow by regulating the rotation speed 
of the magnetic gear pump are three modes that 
control. Temperature measurement using 
thermocouple data logger and a very low error rate, 
even as much interest in evaluating the heat transfer 
has been calculated. The mass flow rate was measured 
with an electronic scale and recorded. Electronic scale 
error ±0.0006 kg. The maximum error of 2.2% mass 
flow of nanofluids were measured. Heat transfer  for 
the error calculation also consider the error. As noted 
above, it is evident that the error in the measured heat 
transfer is determined by measuring the temperature 
and the amount of cold water and nanofluids depends. 
The measured heat transfer were calculated using the 
square root of the sum of mean and 10%, respectively. 
During the test, a test of the mass flow rate and 
cooling water outlet temperature and inlet water nano-
fluids, nano-fluids measured cold. 
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Fig.5. Average heat flow rate of the Reynolds number at a) 35 and b) 40 °C. 
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Fig.6. the rate of heat flows Reynolds numbers at a) 35 and b) 40 °C. 
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Fig.7. overall heat transfer coefficient versus Reynolds number changes at a) 35 and b) 40 °C 
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