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Foreword

Drought is among the most damaging, and least understood, of all “natu-
ral” hazards. Although recent drought-related disasters from Somalia, to
Cape Town, to California, have contributed to a sense of urgency,
droughts have not received commensurate attention within the hazards
research and practitioner communities, unlike events such as hurricanes,
floods, and earthquakes, which have direct and immediately visible
impacts. Most countries, regions, and communities currently manage
drought risk through reactive, crisis-driven approaches. Drought thus
remains a “hidden” hazard and yet can span timescales from a few months
and seasons to decades, and spatial scales from a few square kilometers to
entire regions, with billions of dollars and thousands of lives and liveli-
hoods affected or lost. Despite progress, there are still important limita-
tions to our understanding and ability to predict various aspects of
drought, including onset, duration, severity, recovery, and recurrence.

As has been noted, much is assumed about the vulnerability and capac-
ity of those affected by environmental hazards. In the context of a chang-
ing climate, much is also assumed about the reliability of projections and,
as importantly, about our understanding of present-day variability and
how features such as ENSO might be changing. The assumptions that are
being made by both researchers and practitioners warrant a more careful
and updated explication of the state of knowledge, uncertainties, chal-
lenges, and benefits. This volume is a much needed and timely comple-
ment to the long-standing challenge of understanding the socio-ecological
conditioning factors of drought-related risk, framed under the action-
oriented concept of “early warning.” As elucidated in the text, faster rates
of environmental change, including compounding effects of heat stress/
evaporative demand, and the increasingly complex development and eco-
logical pathways through which drought impacts filter, may drive surprises
and rapid transitions in which early warnings of emerging thresholds are
increasingly critical. Improving predictions of the full life cycle of
droughts requires a better understanding of how water, vegetation, and
energy signals propagate through the ocean�atmosphere�land system,
shedding light on the predictability of the various physical facets of
drought, including precipitation, temperature, soil moisture, snow, and
runoff.

xi



As long recognized, and fully explored in this volume, a forecast by
itself is not an early warning system. In a proactive framing an early warn-
ing system involves much more than development and dissemination of a
forecast; it includes the systematic collection and analysis of relevant infor-
mation about, and coming from, areas of impending risk that (1) informs
the development of strategic responses to anticipate crises and crisis evolu-
tion; (2) provides capabilities for generating problem-specific risk assess-
ments and scenarios; and (3) effectively works with and communicates
options to critical actors for the purposes of decision-making, prepared-
ness, and mitigation. Successful drought information systems have multiple
subsystems supported by research in integrated risk assessment, communi-
cation, and decision support, of which early warning is a component and
output. This volume brings to bear the experience of the authors, who
have been engaged in early warning system development since the East
African droughts of the mid-1980s, and systematically scrutinizes the
“pros” and “cons” of existing and proposed systems, distilling lessons from
past practices, landmark drought events, and advances in the field.

The authors capture key aspects of early warning design, including the
importance of convergence of evidence, placing multiple indicators within
consistent triggering frameworks, and the confounding factors of popula-
tion, technology, and environmental change. Sources of physical informa-
tion as noted in the text are derived from satellite data, in situ
observations, land surface simulation, and model-based forecast skill. Key
to the productive use of such information within early warnings is clearer
delineation of sources of uncertainty, their reliability at different times of
the year, and the integration of diverse environmental data sets into
coherent databases such as the CHIRPS.

As the authors note, the volume aims at pragmatic goals—to provide a
readable, accessible resource that is useful in both a classroom and in
national, meteorological, and hydrological agencies. Several studies have
identified the characteristics of predecisional practices that lead to effective
communication over the long term. Key among these characteristics is the
need to bring the delivery persons (e.g., extension personnel within local
communities and the research community) to an understanding of what
has to be done to translate current information, reliably, into local con-
texts, as well as the need to develop, support, and train a cadre of profes-
sionals who view the role of linking science, policy, and practices as a
core goal over the long term. The chapters on practice on actionable
information and decision-making networks provide an excellent ground-
ing for the training of such professionals.
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The authors are abundantly clear that the chapters do not presume to
cover all aspects of drought risk and resilience management. They choose
a more modest goal, highlighting the science and observations that under-
pin actionable impacts assessments and early warning. The depth to which
these issues are pursued in the volume, while maintaining readability and
accessibility, is impressive and very much welcomed. This book is an
important contribution to the challenge of drawing information along the
weather�climate continuum, from internal atmospheric variability to
modes of climate. The chapters illustrate the need to not only understand
and design information systems “for” change but also to design robust
science-based systems that help us navigate “through” change. More than
useful or even usable information is needed; what is required are pathways
to improved decisions that thread through disaster risk reduction, adapta-
tion, sustainability. Drought information systems along this continuum are
investments rather than “costs.” Such an informed drought early warning
system would not be simply translational but, by design, transformative.
This book provides robust and needed guidance on building such a path.
The chapters in this volume will be vital tools in the quiver of effective
early warning practitioners and researchers and for providing a space in
which these communities can work together.

Roger S. Pulwarty
NOAA Physical Sciences Laboratory, Boulder, CO, U.S.
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Preface

We are pleased to share with you Drought Early Warning and Forecasting:
Theory and Practice. This book is intended to assist both students and
drought early warning practitioners in understanding, developing, and
applying drought early warning systems. Every year droughts impact mil-
lions of people and cause losses totaling billions of dollars. As our popula-
tion and economies expand, so grows our exposure to drought risk.
Increasing water demands and the impacts of climate change keep acceler-
ating the need for effective drought management and drought early warn-
ing. Focusing on this second challenge, this manuscript gathers together
many of the different components of drought early warning systems. The
introductory chapters (Chapters 1�3) describe the historic nature of
droughts while introducing drought early warning and early warning sys-
tems. Droughts are complex slow-onset multiscale disasters that impact
many different sectors, and drought early warning systems must be corre-
spondingly sophisticated. To this end, the next three chapters (Chapters
4�6) describe key “tools of the trade” (weather and climate forecasts,
land surface models, and maps describing exposure and vulnerability). We
then describe (Chapters 7�8) two theoretical frameworks central to
understanding and monitoring droughts: atmospheric water demand and
drought indices. The remaining “practice” chapters (Chapters 9�12) of
the book address various aspects related to developing integrated systems.
While some of this material has been drawn from our many years of
experience with the Famine Early Warning Systems Network, the techni-
cal descriptions, general strategies, and lessons learned should be applicable
in many drought early warning settings.

Drought early warning practitioners have a unique opportunity to use
their skills to benefit society, guarding the lives and livelihoods of hun-
dreds of thousands or even millions of people. These skills will be put to
the test in the coming century, and we hope that this accessible “one-
stop-shop” discussion of drought early warning science will prove
valuable.
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CHAPTER 1

Droughts, governance, disasters,
and response systems

History is something that very few people have been doing while everyone else
was plowing fields and carrying water buckets.

Sapiens, Yuval Harari, p. 101

History for us waits silently in the basement of the National Museum
of Ethiopia, in Addis Ababa (Fig. 1.1). There, Lucy, aka AL288-1, rests, as
she has rested for some 3.2 million years. A member of Australopithecus
afarensis, diminutive Lucy walked across the hot, low Afar Triangle in
northeastern Ethiopia during the Pliocene Epoch, or more specifically,
during the mid-Pliocene warm period. The Earth at this time was
extremely warm, with carbon dioxide levels on par with those today
(Raymo et al., 1996). High-resolution pollen data from Hadar, Ethiopia,

Figure 1.1 Skull and pelvis of Lucy, taken at the National Museum of Ethiopia, Addis
Ababa. Chris Funk.
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where Lucy was found, shows a large biome shift, with up to 5°C of
cooling and a large increase in annual rainfall occurring between 3.4 and
2.9 million years ago (Bonnefille et al., 2004). This climate shift may have
helped stimulate the evolution of bipedal proto-humans. Lucy’s bones
represent a species in transition. The shape of her knees and pelvis indicate
bipedal locomotion, and the length of her arms was relatively short and
her legs relatively long, compared to chimpanzees. Her brain, however,
was quite small.

There are numerous theories as to why humans evolved bipedal
motion. Bipedal locomotion is more efficient, and shifting forests and
fragmented landscapes may have rewarded this innovation. Bipedalism
may have made it easier to give birth to big-brained babies (Falk et al.,
2012). Bipedal creatures have their hands free, enabling them to better
produce and manipulate tools. This, in turn, may have led to a more
protein-rich diet, potentially leading to an increase in brain size (Johanson
and Edgar, 1996).

By 2.5 million years ago, our human ancestors were using simple tools.
Our brains had grown prodigiously, necessitating the early birth of chil-
dren and thus longer periods of childhood dependency. This may have
necessitated strong social networks and language development. A single
mother would have had a lot of trouble foraging for food and taking care
of little children. The early birth of children, in turn, may have created
unique opportunities for education, innovation, and cultural evolution.
Tool use and communication may have helped move humans into a top
predator position by 400,000 years ago. It was then that some human
bands were hunting large game on a regular basis. By 300,000 years ago,
we were using fire on a regular basis. Fire killed germs and parasites and
made food easier to chew and digest, allowing our ancestors to eat a
wider variety of food. Easier digestion may have led to shorter intestinal
tracks in Sapiens and Neanderthals (Gibbons, 2007), reducing energy con-
sumption, helping us fuel our massive brains. These huge brains, com-
bined with our social proclivities, helped lead to evolutionary success, and
out-migration from Africa about 70,000 years ago (Harari, 2015).

Humanity moved out of Africa (Fig. 1.2) and spread across Asia and
Europe, with Homo sapiens supplanting Neanderthals, perhaps due to their
advantageous communication skills and societal coordination. These
advantages helped trigger the cognitive revolution, which allowed us to
form large communities and learn, teach, and engage in complex beha-
viors. Slowly, these coordination skills grew, until early humans were able
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Figure 1.2 Expansion of Homo sapiens out of Africa. Chris Funk, after Map 1 in
Sapiens A Brief History of Humankind, Yuval Noah Harari.

Figure 1.3 Sophisticated hunter�gatherers built a temple before agriculture.
Wikimedia.
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to assemble complex temples like Göbekli Tepe, which is in current-day
southern Turkey near the Syrian border (Fig. 1.3). Built around 10,000
BCE, this Neolithic (Stone Age) temple predated agriculture. Immense 6-
m, 20-ton T-shaped stone megaliths were fitted into sockets hewn in the
bedrock to form circles. Intricate carvings of bulls, foxes, cranes, and peo-
ple adorn pillars and totems. Göbekli Tepe supports the early importance
of religion and social structure in human development. Before agriculture,
pottery, writing, metallurgy, or the invention of the wheel, Neolithic
hunter and gatherers built complex societies and buildings.

Soon, however, agriculture would change the world (Fig. 1.4). In the
Middle East’s Fertile Crescent, wheat and goats were domesticated by
about 9000 BCE. c.7000 BCE, independent agriculture innovations led
to the domestication of millet in current-day China. By 4000 BCE early
varieties of maize, beans, and squash were being raised in Central
America. In sub-Saharan Africa, agriculture emerged in the Ethiopian
highlands, West Africa, and the Sahel (Diamond, 1997). Taro, bananas,
and sugarcane were domesticated in New Guinea while South Americans
began to harvest potatoes and manioc. In the southeastern United States,
Native Americans raised sunflowers, sumpweed, and goosefoot.

With the rise of agriculture came an increased societal sensitivity
to drought. With high mobility and low population densities, earlier
hunter�gatherer populations were probably relatively resilient to most

Figure 1.4 Sites of early agricultural development. Chris Funk, after map in Sapiens A
Brief History of Humankind, Yuval Noah Harari.
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climatic extremes. They could move toward more abundant rains, unlike
the farmers of more recent times. The spatial compass of early agricultur-
alists extended to the few miles around their habitations. Villages and cit-
ies lived or died based on the strength of their harvests. For example, a
study of drought stress variability in ancient Near Eastern agricultural sys-
tems finds “The emergence and decline of early civilizations is intrinsically
tied to agricultural surplus production, either enabling a focus on techno-
logical progress and the accumulation of wealth or, in the case of insuffi-
cient yield, leading to hunger, violence, and war (Riehl et al., 2014).”
One of the most severe crises in ancient times was the 4220 BP (2200
BCE) Holocene climate event, which was associated with severe aridity in
North Africa, Egypt, the Middle East, the Indian Continent, and North
America. This aridification event may have helped trigger the demise of
the Old Kingdom in Egypt, the Indus Valley Civilization in India, the
Akkadian Empire in Mesopotamia, and the Liangzhu culture in present-
day China.

The most successful early civilizations supported dense populations by
enabling them to devote resources to religious, administrative, military,
artistic, and industrial activities. Droughts posed an existential threat to
these societies. In response, various water and agricultural management
practices were developed. In ancient Assyria, granaries and artificial irriga-
tion helped overcome food shortages (Sołtysiak, 2016). In ancient
Mesopotamia, where Hammurabi established his famous code in 1754
BCE, there developed a system of communal canals and irrigation works
and a legal framework to govern these works (Kornfeld, 2009). In ancient
Egypt, pharaohs effectively controlled equitable water distribution systems
(primarily driven by manpower) that promoted social stability while pro-
viding supplies to cities and towns (Driaux, 2016). In ancient India, “defi-
ciencies of rainfall were overcome by means of one or the other form of
irrigation—rivers, canals, lakes, tanks, wells, artificial reservoirs, ponds and
pools” (Date, 2008).

Given the acknowledged water dependencies of ancient agricultural
societies, it comes as no surprise that they also showed a keen interest in
drought early warning. Early agrarian populations grew rapidly and could
only be sustained with extensive effort and stable access to water. In his-
toric times, agricultural lands made up a small fraction of the Earth’s land
surface, 2% in CE 1400 (Marks, 2006). These lands needed to be
defended, and when drought struck, there was little mobility, and the
poor must make do.

5Droughts, governance, disasters, and response systems



As described by Yuval Harari:

From the very advent of agriculture, worries about the future became major
players in the theatre of the human mind. Where farmers depended on rains to
water their fields, the onset of the rainy season meant that each morning farm-
ers gazed towards the horizon, sniffing the wind and straining their eyes. Is that
a cloud? Would the rains come on time? Would there be enough? Would vio-
late storms wash the seeds from the fields and batter down the seedlings?
Meanwhile, in the valleys of the Euphrates, Indus, and Yellow Rivers, other pea-
sants monitored, with no less trepidation, the heights of the water.

Sapiens, Yuval Harari, p. 101

Our agricultural foundations have guaranteed a strong dependence on
adequate precipitation that remains with us today. In CE 1400 the Earth
supported about 360 million people, whereas now it supports about 7.6
billion—a 21-fold increase. Today we farm about 12% of the Earth’s ice-
free surface (Ramankutty et al., 2008). In many parts of the world, tech-
nology has dramatically increased yields and altered farming practices. In
others, poor farmers still sow and reap mostly by hand. In all of these
regions, however, crops still require water. Technology can do little to
overcome crop water deficits, and 80% of our croplands are still unirri-
gated. Water can be moved, but this is often expensive and energy inten-
sive. In many parts of the developing world, furthermore, hydropower
has emerged as a critical source of energy, a valuable but potentially fragile
alternative to fossil fuels. Commodity markets, both local and global, can
expose millions of poor people to price shocks, sometimes originating
from droughts thousands of miles away. The poorest of these poor, often
subsisting on 100 or 200 USD a year, typically spend more than half their
incomes on food; when prices jump up, they must often do without
food. In 2018 the city of Cape Town in South Africa faced “Day Zero,”
or the day when the city was expected to run out of water. Such crises
are becoming increasingly common. In 2015 and 2016, Harare,
Zimbabwe, grappling with the impact of an El Niño-related drought,
faced similar conditions, as did Sao Paulo, Brazil. In 2018 Mexico’s 21
million residents also faced shortages of running water.

In ancient times, settlements and cities grew along rivers and gave rise
to great civilizations, and today, according to a recent World Bank report,
we remain highly dependent on water availability (Damania et al., 2017).
This report finds that “throughout much of the world, even moderate
deviations from normal rainfall levels can cause large changes in crop
yields.” Rainfall shocks induce a cascade of effects that include lower
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agricultural production and deforestation. Ironically, in many areas, irriga-
tion can result in the paradox of supply, when water is supplied too cheaply
and consumed recklessly. Droughts can lead to severe undernutrition of
children and mothers, producing childhood stunting, and an increase of
low-birthweight children (Davenport et al., 2017; Grace et al., 2012,
2015), all of which can increase poverty and reinforce intergenerational
health problems.

Droughts still contribute to severe hunger. In 2017 approximately 815
million people, roughly 1 out of every 10 people on our planet, were
deemed by the United Nations Food and Agricultural Organization to be
suffering from chronic hunger. Contemporaneous assessments of
extremely food-insecure populations—those facing a real threat of famine
without immediate emergency assistance—totaled 81 million, roughly
one of every hundred human beings. Despite our great technological
achievements, hunger and drought still plague the advance of humanity.

As populations expand and our climate becomes warmer and more
variable, we will need improved drought early warning systems (DEWS).
This book describes both the theory and practical methods required to
create and effectively use these systems, helping to potentially save lives
and livelihoods while mitigating some of the impacts of climate change.
Over the next 20 years, we know that increasing population, economic
growth, and rising air temperatures will increase demands for water, while
rainfed and glacier-based water supplies are likely to become more erratic.
We also know, however, that our ability to observe the Earth using satel-
lites is rapidly increasing. With each passing year, we can better observe,
explain, and predict weather and climate extremes. Richer social and
computer networks are supporting enhanced communication and decision
support. This information is being used successfully to help us anticipate,
prepare for, and respond to 21st-century droughts. At the beginning of
the 21st century, we are achieving what could only be dreamed of at the
outset of the 20th century.

1.1 20th-century droughts—disasters and the El
Niño�Southern Oscillation

The 20th century began with severe famines that killed tens of millions of
people, helping to motivate the modern science of drought early warning.
Between 1896 and 1902, in India and China, the monsoon rains failed,
bringing destructive epidemics of malaria, bubonic plague, dysentery,
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smallpox, and cholera (Davis, 2002). Mortality estimates for India indicate
19 million people may have perished, while in China, it was estimated to
be 10 million. The Bombay Government’s “Report on the Famine in the
Bombay Presidency” found that 1899�1900 harvests in the Bombay
Deccan, Karnatak, and Gujarat provinces were only 4%�16% of normal.
Indian authorities, held under rigid inflexible ideological British rule,
failed to respond adequately to the extreme conditions. George Nathaniel
Curzon, first Marquess Curzon of Kedleston, served as viceroy. In his zeal
to suppress Home Rule, Curzon tightened press censorship, clamped
down on education, and pitted Hindu against Muslim. For Curzon,
financing the Boer War in South Africa was much more important than
relieving the distress of the famine-stricken people of India. Writing at the
time, and quoting data from the Lancet, William Digby wrote “This
statement by what is probably the foremost medical journal in the world
means that the loss of life thus recorded represented the ‘disappearance’ of
fully one-half a population as large as that of the United Kingdom”

(Davis, 2002).
For India the successive droughts of 1876�79, 1896�97, and

1899�1900 had a huge negative impact on productivity, livestock, and
development. “Almost all the progress made in agricultural development
since 1880 was nullified during the famines” (Davis, 2002).

India’s terrible droughts, however, did help prompt major intellectual
advances that eventually helped us understand, and sometimes anticipate,
future climate extremes.

Gilbert Walker’s appointment as Special Assistant to the Director
General of the Indian Observatories in 1903 came as a surprise (Walker,
1997). Before being selected for the job, Gilbert “Boomerang” Walker had
recently published an original and imaginative paper on these Australian
spinning devices (boomerangs) in the Philosophical Transactions of the
Royal Society (1897, 190, pp. 23�42). Walker had been selected because
of his exceptionally strong mathematical capabilities. In 1904 he took
charge of the India Meteorological Department. While organizing the vari-
ous Indian weather observatories and services took up much of his time, he
quickly turned to analyzing the accuracy of monsoon forecasts. Realizing
that he could not predict the monsoon droughts analytically, he turned to
the analysis of lagged correlations. Interestingly, this work led to fundamen-
tal advances in our understanding of one important feature of the mean
global climate (the Walker Circulation), the most important quasiperiodic
climate variation [the El Niño�Southern Oscillation (ENSO)], and a
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mathematical description of the expected autocorrelation structure of an
autoregressive process (the Yule�Walker equations) (Katz, 2002).

Like previous meteorologists before him, Walker began the daunting
prospect of looking for predictive anomalies that could be used to forecast
Indian droughts. This led him to analyze variations in worldwide weather.
Following the new work of the statistician Karl Pearson, he became a pio-
neer in the use of correlation in meteorology. By 1908 he was using mul-
tiple regression to predict monsoon rainfall. Examining the relatively rich
set of global weather data available to a British meteorologist, Walker also
looked for “Centers of Action” by examining extensive tables of autocor-
relations and cross-correlations in sea-level pressure at multiple locations.
From this analysis (Katz, 2002), he determined, “there is a swaying of
pressure on a big scale backwards and forwards between the Pacific Ocean
and the Indian Ocean, there are swayings, on a much smaller scale,
between the Azores and Iceland, and between the areas of high and low
pressure in the N. Pacific” (Walker, 1923). The swaying of pressure
between the Pacific and Indian Oceans is now referred to as the
“Southern Oscillation” (SO). The seesaw between the Azores and Iceland
is known as the North Atlantic Oscillation, and the oscillation in the
Pacific is referred to as the North Pacific Oscillation. All three of these
patterns of climate variability have turned out to be critical drivers of cli-
mate and drought (Fig. 1.5).

Walker, however, pointed out that the influence of the SO seemed
much greater and more persistent than the other two oscillatory patterns.
Things have changed a lot since Walker flung his boomerangs and pain-
fully worked out his cross-correlation tables by hand. Technology, the
Internet, computers, and carefully compiled data sets now make it easy to
analyze the importance of climate patterns like the SO. For example, with
a few well-chosen clicks, we can compile a map of the correlation
between local sea-level pressure values and the “SO Index”—an index

Figure 1.5 Centers of Action associated with the Southern Oscillation. Chris Funk.
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measuring the difference in sea-level pressure between Tahiti in the South
Pacific and Darwin, Australia. This pattern, first identified by Walker,
identifies a quasi-global seesaw1 in pressure between the west Pacific/
Indian Ocean region and the east Pacific.

As owners of a vast international naval empire, the British were keen
to track and analyze sea-level pressure data, like the data analyzed by
Gilbert Walker, because it was strongly related to changes in surface
winds. Understanding the mean (long-term average) structure of atmo-
spheric circulations turns out to be a critical component of effective
drought early warning. Understanding our “normal” climate provides an
important foundation for understanding extremes. One key advance on
this front was made by George Hadley (1685�1786). Hadley was an
English lawyer and amateur meteorologist who proposed the atmospheric
mechanism by which the trade winds are sustained. As a key factor in
ensuring that European sailing vessels reached North American shores,
understanding the trade winds was a matter of great importance at the
time. Hadley was intrigued by the fact that winds, which should by all
rights have blown straight toward the equator, had a pronounced westerly
flow. Hadley (1735) began considering how the differential heating of the
equator produced low atmospheric pressure, which drew in the low-level
winds: “For let us suppose the Air in every Part to keep an equal Pace
with the Earth in its diurnal Motion; in which case there will be no rela-
tive Motion of the Surface of the Earth and Air, and consequently no
Wind; then by the Action of the Sun on the parts about the Equator, and
the Rarefaction of the Air proceeding there from, let the Air be drawn
thither from the N. and S. parts.” Hadley then went on to introduce the
idea of the conservation of angular momentum: “From which it follows,
that the Air, as it moves from the Tropics towards the Equator, having a
less Velocity than the Parts of the Earth it arrived at, will have a relative
Motion contrary to that of the diurnal Motion of the Earth in those Parts,
which being combined with the Motion towards the Equator, a N.E.
wind be produced on this Side of the Equator, and S.E. on the other.”

Hadley’s theory turned out to be correct, and the structure he
described is now known as the Hadley Circulation (Fig. 1.6). The Hadley
Circulation described the North�South and up�down motions of the

1 In writing the first draft of this sentence, we made a prescient typographic error—
describing seesaw patterns. But it would be decades before scientists linked the atmo-
spheric Southern Oscillation with the oceanic phenomenon known as El Niño.
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atmosphere averaged across every longitude band. The differential heating
of the equator combined with the conservation of angular momentum
produces near-surface atmospheric convergence near the equator. This
band of convergence is also associated with heavy rainfall and ascending
atmospheric motions (red band in Fig. 1.6). Air parcels rise and move
toward the poles (and the east). The conservation of angular motion again
turns them into a strongly eastward wind field (the sub-Tropical Easterly
Jet). These relatively warm parcels of air cool, radiating their extra warmth
back out to space. This cooling makes the atmosphere very stable, and we
find a tendency for air to subside (sink) in the subtropics, at latitudes of
about 30-degree north and south. This latitude is where we tend to find
most of the world’s deserts and arid lands: the Sahara, Kalahari, Arabian
Peninsula, Southwest and Central Asia, Atacama Desert, Australia, and the
southwestern United States are associated with the sinking branch of the
Hadley Circulation. Many severe droughts occur within or on the edges
of these dry regimes, where conditions can slip from tentative to disas-
trous, sometimes for years on end.

Gilbert Walker’s SO, however, focused on East�West variations
between the eastern and western Pacific. Eventually, this would turn out
to be a critical advance leading to effective drought forecasts. A key step
toward that point, though, was describing the mean (long-term average)
structure of the east�west atmospheric motions over the Pacific. This pio-
neering work was carried out by Jacob Bjerknes in the 1960s. He coined
the term “Walker Circulation” and was the first person to describe the

Figure 1.6 Schematic representation of the Hadley Circulation. Chris Funk.
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link between El Niño and the Southern Oscillation (Bjerknes, 1969).
This coupled air-sea climate variation is now commonly referred to as the
ENSO. Bjerknes started by noting that the eastern Pacific sea surface tem-
peratures were exceptionally cold (Fig. 1.7), while the western Pacific/
Indian Ocean sea surface temperatures were much warmer. Because at the
equator, we do not need to worry about the conservation of motion,
Bjerknes theorized that this temperature gradient would set up a thermally
direct circulation. Cold waters produce cold air with a relatively high
density. Warm waters produce warm air with low densities. Winds at the
equator will move toward the lower pressure. This wind pattern produces
many positive feedbacks that help create the Indo-Pacific Warm Pool
(Clement et al., 2005), while also reinforcing the strong east�west tropi-
cal temperature gradient between the Warm Pool and the equatorial east
Pacific.

The “Warm Pool” is a term used to describe the world’s warmest
ocean waters in an area of the equatorial eastern Indian and Western
Pacific Oceans (Fig. 1.8). In this rainiest region on the Earth, sea surface
temperatures routinely exceed 29°C (84°F) and annual precipitation totals
often exceed 3 m (129 in.) of rainfall. To the east of the Warm Pool the
rapid persistent westward trade winds blow across the eastern Pacific. In
the Pacific Ocean, these winds transport heat from the east Pacific into

Figure 1.7 Sea surface temperature represented as deviation from the average at
each latitude. From Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial
Pacific. 97(3), 163–172—Figure 7.
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the Warm Pool region. This acts to cool the east Pacific and warm the
west Pacific. This warming pushes down the “thermocline” (the depth at
which the ocean rapidly transitions to much cooler temperatures). This
has the effect of producing very persistent warm ocean conditions. Above
the Warm Pool, we find a similar convergence of warm, moist air. The
buildup of this warm, moist air increases the depth of the planetary
boundary layer (the lowest well-mixed layer of the atmosphere, which
tends to be humid over the oceans). This increase in wet, warm air has
several important feedbacks that help warm the Warm Pool and maintain
the Walker Circulation. The thick boundary layer over the Warm Pool
holds a lot of water (about 50 kg m22), and this water vapor is a very
active greenhouse gas. When there is abundant water vapor over the
Warm Pool, this moisture acts as positive feedback, warming the Warm
Pool by increasing the amount of longwave (infrared) radiation absorbed
by the ocean.

A less direct but equally important feed involves the atmospheric
response to the conditionally unstable warm moist air above the Warm
Pool. Intense precipitation occurs easily under such conditions.
Condensing water vapor releases a great deal of energy, and this heating
produces rising air near the intersection of the Indian and Western Pacific
Oceans (Fig. 1.9). This air rises and cools and then tends to move toward
the eastern Pacific and western Indian Oceans, where it sinks producing a
tendency for hot dry surface conditions. This subsidence produces high
surface pressures, which results in a surface pressure gradient between the
east Pacific and the west Pacific. This gradient supports the easterly trade
winds, reinforcing heat and water vapor transports into the Warm Pool
and out of the eastern equatorial region, completing the Walker

Figure 1.8 Schematic diagram describing the Indo-Pacific Warm Pool. Chris Funk.
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Circulation. This convergence of heat and water, in turn, feeds the Warm
Pool’s heavy precipitation.

Another subtle but critical feature of the equatorial ocean acts to
enhance the climatological (long-term average) sea surface temperature
gradient between the eastern and western Pacific (Fig. 1.7). This mecha-
nism is known as the Bjerknes feedback. A critical feature of this feedback
is how the equatorial ocean responds to easterly winds. These winds
induce Ekman pumping, which draws up cool subsurface waters. This
vertical mixing keeps the eastern Pacific cooler than the Warm Pool, rein-
forcing the Walker Circulation (Figs. 1.8 and 1.9

Sometimes, however, a westerly wind burst over the Pacific can trig-
ger an “El Niño event.” The term “El Niño” refers to the “Christ Child”
and was associated with warm waters in the far eastern Pacific that used to
appear in December, bringing bountiful harvests to fishermen in Chile
and Peru (Glantz, 2001). These warm waters create a dramatic reversal of
the equatorial trade winds over the east Pacific, shutting down the cooling
produced by Ekman pumping and triggering a dramatic increase in mois-
ture convergence and precipitation over the eastern Pacific. This oceanic
El Niño, combined with the atmospheric SO identified by Gilbert
Walker, results in a coupled ocean-atmospheric phenomenon—the
ENSO.

An ENSO event produced the severe drought that led to India’s turn
of the century drought, setting the stage for famine (Davis, 2002).
Another ENSO event in 1982�83 helped trigger a massive drought that
stretched across the Sahel region of West Africa and into Sudan and
Ethiopia, helping to fuel a massive outbreak of famine. Again in 1997/98
and 2015/16, large El Niños strongly modulated the Walker Circulation,
helping to produce droughts and floods and increase air temperatures. In

Figure 1.9 Schematic diagram overturning Walker Circulation. Chris Funk.
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Figure 1.10 2015–16 Droughts associated with El Niño food security impacts. Rogerio Bonifacio, World Food Programme.



2015/16 food security experts from the World Food Programme linked
El Niño (Fig. 1.10) with widespread dry conditions across Central and
South America, southern Africa, India, Southeast Asia, and the Maritime
Continent. In Ethiopia and southern Africa the extreme 2015/16 event
drastically reduced runoff, crop production, and pasture conditions (Funk
et al., 2016, 2017), leading to an enormous (B26 million person) increase
in the level global acute food insecurity (Funk et al., 2018). Thailand suf-
fered more than $500 million dollars in agricultural losses (Christidis et al.,
2018). In India, in May of 2015, a heat wave led to the death of thou-
sands (Di Liberto, 2015), as premonsoon temperatures soared above 110°F
(43°C) over much of the country, and some regions saw temperatures as
high as 117.7°F (47.6°C). The following monsoon season in India was
very poor, negatively impacting more than 330 million people.

Between 1915, when “Boomerang Walker” pored over statistical
tables looking for clues to understand and anticipate Indian Monsoon fail-
ures, and 2015 when the world climate modeling centers successfully pre-
dicted a severe El Niño associated with poor Indian Monsoonal rains, all
the elements supporting effective drought early warning were put in
place. Standing on the shoulders of giants, we have a much deeper under-
standing of how our global circulation systems work, and how they may
be perturbed by climate variations like El Niños. Decades of efforts assem-
bling observational systems based on weather stations and satellite Earth
observations allow us to track global weather variations in near real time.
Huge investments in climate modeling and computation now allow us to
make skillful predictions days, weeks, and sometimes even months into
the future.

1.2 21st-century droughts—developing effective early
warning systems

Droughts are “slow-onset disasters.” Unlike quickly striking crises, such as
earthquakes, they creep up slowly through the gradual accumulation of
water deficits. This creates a unique opportunity for effective early warn-
ing. At the same time, the early identification of droughts can be very
challenging, in part because it can be unclear as to “when” a drought has
really “happened.” As a metaphor, consider the fable of the frog in a pot
of water. According to the fable, but not experimental analysis, a frog
placed in a slowly warming pot will sit placidly until expiration. Like the
proverbial frog in the pot of warming water, droughts tend to sneak up
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on us slowly. A complicating factor (discussed more completely in the
next chapter) is the fact that droughts can be defined in many ways.
While always involving a shortage of available water, how this shortage
arises and the measure of its severity depends on many factors, such as the
intended use of the water, the vulnerability, coping capacity and exposure
of the human-environmental system, and the historical and cultural con-
text. In one context a 100 mm (4 in.) rainfall deficit might mean the dif-
ference between death and destruction or salvation and stability, but in
another setting, say on the windward side of a tropical island, such a dif-
ference might not even be noticed.

As we shall see, successful 21st-century DEWS are effective, and inter-
esting, because they successfully integrate and express information across
many physical and social domains. This integration is both substantive and
linguistic. For example, effective DEWS will combine (Fig. 1.11) infor-
mation from multiple disciplines and data sources in ways that take advan-
tage of and interpret the relevant context and setting. Take, for example,
the “simple” example of a rancher in Kansas or a Masai pastoralist living
in southern Kenya. A drought early warning specialist might be interested
in information provided by the following disciplines: veterinary science,
drylands ecology, herd dynamics, micro- and macroeconomics, hydrol-
ogy, meteorology, climate modeling, climate dynamics, paleoclimate, and
remote sensing. Typically, only a relatively modest understanding of these
vast fields is required, but this information can be very important. Assume

Figure 1.11 Dimensions of drought early warning. Chris Funk.
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that we are interested in drought as it affects a small independent rancher
in Kansas or an itinerant pastoral family in Africa. Effective drought early
warning could be informed by our understanding of the relation between
high temperatures, water stress, and limited grazing potential and cattle
health. When do high temperatures start having a large negative impact
on herds? Is water being provided via irrigation, rainfed streams and
ponds, snowmelt from glaciers? Are the herds grazing rangeland grasses, or
consuming large quantities of purchased grain? How do the ecosystems of
interest respond to water stress? How might these water-related stresses be
compounded by environmental conditions such as high temperatures and
atmospheric evaporative demand or degraded pastures? How might social
conditions such as large herd densities or a limited ability of the herder or
rancher to respond to water stress amplify or minimize the impact of a
given water shortage? How might the economic context modify the
impact of a given climate shock? How poor are households being consid-
ered? What are their financial reserves? How sensitive is the given finan-
cial market to shocks in production? Do prices of herd animals and inputs
such as fodder vary dramatically?

Connecting the dots across sets of questions like these is daunting, and
such challenges give birth to DEWS. DEWS, like the U.S. National
Integrated Drought System (NIDIS), which focuses on the Continental
United States, or the U.S. Agency for International Development’s food
security�oriented Famine Early Warning Systems Network (FEWS
NET), combine the abilities of many disciplinary experts, who combine
information from many sources, in ways that take into account the history
and context of a given application (see Chapter 3: Drought Early
Warning Systems).

“System” used in this context is more similar to a hospital than a com-
puter program or flowchart. When the ambulance pulls up to the hospital,
one hopes to have on hand the combined expertise from specialists of
many disciplines. These experts will not only combine information from
an array of multiple data sources but also need to take into account the
life history and context of the patient and their ailment.

Each step across a discipline or data source creates a potential challenge
in communication. Effective translation provides one of the mainstays of
effective drought early warning. In the 21st century, we can achieve so
very much more than Gilbert Walker might have dreamed of. We can
predict El Niños with a high degree of certainty. These predictions are
only useful if we can predict changes in regional precipitation and
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temperatures. Using climate models and satellite-enhanced weather
observing systems, we can predict and monitor precipitation and tempera-
ture with reasonable levels of accuracies in many places. The utility of this
information is often limited, unless we can translate these weather fluctua-
tions into impacts or shocks—like reductions in crop yields, or pasture
biomass, or potential hydropower production. And the utility of such
impact assessments is amplified by context-sensitive communication and
interpretation. Knowing where a given reduction in yields/pasture bio-
mass or potential hydropower production might have the greatest impact
helps guide effective responses. Knowing how to package and communi-
cate drought early warning information is a central component of effective
DEWS, and this includes communication between domain experts and
the stakeholders who use the warnings provided.

While the challenges involved in implementing effective DEWS are
challenging, they are not insurmountable, and good DEWS inevitably
evolve and improve over time. As our human population grows, eco-
nomic activities increase, and on a rapidly warming planet, crop and water
stresses will increase, and we will need better drought monitoring and
prediction systems. This book describes some of the components of such
systems, with a general focus on the Earth system science aspects of
DEWS. Chapters 2�6 explore and define various pillars of successful
DEWS. What are some of the basic challenges and opportunities associ-
ated with drought early warning (Chapter 2: Drought Early Warning—
Definitions, Challenges, and Opportunities)? How do well-developed
DEWS such as NIDIS or FEWS NET work (Chapter 3: Drought Early
Warning Systems)? What are the primary tools of the trade (Chapters
4�6)? Chapter 7, Theory—Understanding Atmospheric Demand in a
Warming World, and Chapter 8, Theory—Indices for Measuring
Drought Severity, explore the scientific aspects of effective drought pre-
diction. What causes droughts and how can we measure them? Chapters
9�11 then apply our understanding.

References
Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. J. Phys.

Oceanogr. 97(3), 163�172.
Bonnefille, R., Potts, R., Chalié, F., Jolly, D., Peyron, O., 2004. High-resolution vegeta-

tion and climate change associated with Pliocene Australopithecus afarensis. Proc. Natl.
Acad. Sci. U.S.A. 101, 12125�12129.

19Droughts, governance, disasters, and response systems

http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref1
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref1
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref1
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref2
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref2
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref2
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref2


Christidis, N., Manomaiphiboon, K., Ciavarella, A., Stott, P.A., 2018. The hot and dry
April of 2016 in Thailand. Bull. Am. Meteorol. Soc. 99, S128�S132.

Clement, A.C., Seager, R., Murtugudde, R., 2005. Why are there tropical warm pools? J.
Clim. 18, 5294�5311.

Damania, R., et al., 2017. Uncharted Waters: The New Economics of Water Scarcity and
Variability. World Bank.

Date, R., 2008. Water-management in ancient India. Bull. Deccan Coll. Res. Inst. 68/69,
377�382.

Davenport, F., Grace, K., Funk, C., Shukla, S., 2017. Child health outcomes in sub-
Saharan Africa: a comparison of changes in climate and socio-economic factors.
Global Environ. Change 46, 72�87.

Davis, M., 2002. Late Victorian Holocausts. Verso.
Diamond, J., 1997. Guns, Germs and Steel. W.W. Norton.
Di Liberto, T., 2015. India heat wave kills thousands. ClimateWatch Magazine June 9,

2015.
Driaux, D., 2016. Water supply of ancient Egyptian settlements: the role of the state.

Overview of a relatively equitable scheme from the Old to New Kingdom (ca.
2543�1077 BC). Water Hist. 8, 43�58.

Falk, D., Zollikofer, C.P.E., Morimoto, N., Ponce de León, M.S., 2012. Metopic suture
of Taung (Australopithecus africanus) and its implications for hominin brain evolution.
Proc. Natl. Acad. Sci. 109.

Funk, C., et al., 2016. Assessing the contributions of local and east Pacific warming to the
2015 droughts in Ethiopia and southern Africa. Bull. Am. Meteorol. Soc. 97,
S75�S80.

Funk, C., et al., 2017. Anthropogenic enhancement of moderate-to-strong El Niños likely
contributed to drought and poor harvests in southern Africa during 2016. Bull. Am.
Meteorol. Soc. 37.

Funk, C., et al., 2018. Examining the role of unusually warm Indo-Pacific sea surface tem-
peratures in recent African droughts. Q. J. R. Meteorolog. Soc. 144, 360�383.

Gibbons, A., 2007. Food for thought (June, pg 1558, 2007). Science 317, 1036.
Glantz, M.H., 2001. Currents of Change: Impacts of El Niño and La Niña on Climate

and Society. Cambridge University Press.
Grace, K., Davenport, F., Funk, C., 2015. Linking climate change and health outcomes:

examining the relationship between temperature, rainfall and low birth weight in
Africa. Global Environ. Change 35, 125�137.

Grace, K., Davenport, F., Funk, C., Mcnally, A.P., 2012. Child malnutrition and climate
in sub-Saharan Africa: an analysis of recent trends in Kenya. Appl. Geogr. 35.

Hadley, G., 1735. On the cause of the general trade winds. Philos. Trans. R. Soc 34,
58�62.

Harari, Y., 2015. Sapiens. HarperCollins.
Johanson, D.C., Edgar, B., 1996. From Lucy to Language. Simon & Schuster.
Katz, R.W., 2002. Sir Gilbert Walker and a connection between El Niño and statistics.

Stat. Sci. 17, 97�112.
Kornfeld, I.E., 2009. Mesopotamia: a history of water and law. The Evolution of the Law

and Politics of Water. Springer, pp. 21�36.
Marks, R.B., 2006. The Origins of the Modern World: A Global and Ecological

Narrative From the Fifteenth to the Twenty-First Century. Rowman & Littlefield
Publishers, p. 220.

Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1.
Geographic distribution of global agricultural lands in the year 2000. Global
Biogeochem. Cycles 22, n/a-n/a.

20 Drought Early Warning and Forecasting

http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref3
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref3
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref3
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref4
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref4
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref4
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref5
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref5
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref6
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref6
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref6
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref7
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref8
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref9
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref9
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref9
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref9
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref9
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref10
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref10
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref10
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref11
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref11
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref11
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref11
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref12
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref12
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref12
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref13
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref13
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref13
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref14
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref15
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref15
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref16
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref16
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref16
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref16
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref17
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref17
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref18
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref18
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref18
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref19
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref20
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref21
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref21
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref21
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref22
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref22
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref22
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref23
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref23
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref23
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref24
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref24
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref24


Raymo, M.E., Grant, B., Horowitz, M., Rau, G.H., 1996. Mid-Pliocene warmth: stron-
ger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313�326.

Riehl, S., Pustovoytov, K.E., Weippert, H., Klett, S., Hole, F., 2014. Drought stress vari-
ability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain.
Proc. Natl. Acad. Sci. U.S.A. 111, 12348�12353.

Sołtysiak, A., 2016. Drought and the fall of Assyria: quite another story. Clim. Change
136, 389�394.

Walker, G.T., 1923. Correlation in seasonal variations of weather, VIII: A preliminary
study of world weather. Memoirs of the Indian Meteorological Department. Indian
Meteorological Department.

Walker, J., 1997. Pen portrait of Sir Gilbert Walker. Weather 52, 217�220.

21Droughts, governance, disasters, and response systems

http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref25
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref25
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref25
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref26
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref26
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref26
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref26
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref26
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref27
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref27
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref27
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref27
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref28
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref28
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref28
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref29
http://refhub.elsevier.com/B978-0-12-814011-6.00001-4/sbref29


CHAPTER 2

Drought early warning—
definitions, challenges, and
opportunities

2.1 Definitions—supply and demand, the many flavors
of “dry”

Man, if you have to ask what jazz is, you’ll never know.
Louis Armstrong.

Droughts are enigmatic (Wilhite, 1993), creeping, and hard to define
despite the fact that they are one of the most widespread and damaging
types of natural disasters (Wilhite and Glantz, 1985). As discussed in
Chapter 1, Droughts, Governance, Disasters, and Response Systems,
anticipating, monitoring, and responding to droughts has been a major
challenge for humanity since the Neolithic era some 9000 years ago. The
purpose of this book is to provide a comprehensive and integrative discus-
sion of the physical science underlying the many components of an inte-
grated drought early warning system (DEWS). Our focus is on providing
a description of the technologies, principles, and application strategies that
support successful 21st-century DEWS, such as those listed in Table 2.1.
We hope to provide a single resource that can describe many of the key
aspects of operational DEWS, and how these different constituents may
or may not fit together. The reader should note that there are many
excellent books that recount the historical development and more detailed
scientific aspects of drought monitoring. Table 2.2 provides an incomplete
list of some of these excellent resources. Integrated approaches to drought
risk reduction stand on three pillars (Wilhite and Pulwarty, 2017): moni-
toring and early warning and information delivery systems, vulnerability
and impact assessment, and mitigation and response. This book focuses on
half of the first pillar: monitoring and early warning, with some discussion
of how effective monitoring and early warning can successfully inform
impact assessments and effective mitigation and response. As we will see,
just a cursory description of all the components entering 21st-century
monitoring and early warning systems draws on a wide range of subjects,
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including at least meteorology, climatology, oceanography, satellite
remote sensing, agronomy, hydrology, nutrition, health, economics, and
food security. As described in a 2014 paper (Pulwarty and Sivakumar,
2014), early warning provides a critical component of modern DEWS. As
described in this study, an early warning system is much more than just a
forecast—“it is a linked risk information system and communication

Table 2.1 Examples of drought early warning systems, including those listed in
Pulwarty and Sivakumar (2014).

Early warning system or sites Website

FAO GIEWS http://www.fao.org/giews/en/
U.S. National Integrated

Drought Information
System

www.drought.gov

U.S. Drought Monitor http://droughtmonitor.unl.edu/
California/Nevada Climate

Applications Program
https://scripps.ucsd.edu/programs/cnap/

Famine Early Warning
Systems Network

www.fews.net

Global Integrated Drought
Monitoring and
Prediction System

http://drought.eng.uci.edu/

South Asia Drought Monitor https://sites.google.com/a/iitgn.ac.in/
high_resolution_south_asia_drought_monitor/

Monitoring Agricultural
Resources

https://ec.europa.eu/jrc/en/mars

IGAD Climate Prediction
and Applications Centre

http://www.icpac.net/

World Food Programme http://vam.wfp.org/sites/seasonal_monitor/
Permanent Interstate

Committee for Drought
control in the Sahel

http://www.agrhymet.ne/eng/

Southeast Asia Drought
Monitoring System

http://dms.iwmi.org/

southern African
Development
Community, Directorate
Climate Services Centre

http://www.sadc.int/sadc-secretariat/services-
centres/climate-services-centre/

European Drought
Observatory

http://climate-adapt.eea.europa.eu/metadata/
portals/european-drought-observatory-edo

GEOGLAM Crop Monitor https://cropmonitor.org/

FAO GIEWS, Food and Agricultural Organization Global Information and Early Warning System.
Source: Information compiled by Shukla and Funk (2019).
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system that actively engages communities involved in preparedness.” In
this book, we stress that effective early warning of drought risk requires
the integration of information across multiple disciplines, origins, and time
scales, presented in a way that can be effectively used by stakeholders.
Modern drought early warning begins with a clear but complex definition
of drought and its impacts.

2.2 Droughts—when water demand exceeds water supply

Originally, the term drought comes from the old English term “drugað”
and the Germanic root �dreug, meaning “dry.” In modern times, we gen-
erally use this term to refer to a period of time, in a specific place, when
there is not enough water. This latter phrase, however, is very vague,
because it implies both variations in the overall water supply and the
overall demand for water. While both supply and demand may have
important social, economic, and sectoral permutations, it is worth starting
with a generic “bucket model” describing the amount of water in a col-
umn of soil, watershed, or reservoir as a function of storage (S), supply

Table 2.2 Relevant books describing droughts and its early warning systems.

Drought-related books Date, authors, or editors

Drought: Past Problems and Future
Scenarios

2012, Sheffield, J., Wood, E.F.

Remote Sensing of Drought:
Innovative Monitoring Approaches

2012, Wardlow, B.D., Anderson,
M.C., Verdin, J.P.

Drought and Water Crises: Integrating
Science, Management, and Policy

2017, Wilhite, D., Pulwarty, R.S.

Drought: a Global Assessment 2000, Wilhite, D.
Drought and Water Crises: Science,

Technology, and Management Issues
2005, Wilhite, D.

Drought: Research and Science-Policy
Interfacing

2015, Paredes-Arquiola, J., Haro-
Monteagudo, D., Van Lanen, H.

Managing the Risks of Extreme Events
and Disasters to Advance Climate
Change Adaptation: Special Report
of the Intergovernmental Panel on
Climate Change

2012, Field, C.B., et al.
https://www.ipcc.ch/pdf/special-

reports/srex/SREX_Full_Report.
pdf

Famine Early Warning Systems and
Remote Sensing Data

2008, Brown, M.

Source: Information compiled by Shukla and Funk (2019).
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described here as rainfall (R), and a rate of extraction or demand,
described here using the rate of actual evapotranspiration. Between some
time “i” and time “i1 1,” the change in storage will be equal to
Ri2ETi, and we can describe our bucket model system using a simple
equation: Si115 Si1Ri2ETi. Like a bank account, Si quantifies our
reserves. If Si is large compared to our supply and demand terms (Ri and
ETi), we will experience droughts infrequently. If Si is small, the system
being examined will be drought prone. Multidisciplinary drought early
warning science focuses on understanding, modeling, and predicting the
storage supply and demand terms that produce shortages of water. The
opportunities associated with drought early warning are many: droughts
are the most common natural disaster, and the incremental nature of
water deficits ensures that droughts are “slow-onset disasters,” typically
providing some window for the early prediction and identification of
extreme events.

Seminal definitions of drought (Wilhite and Glantz, 1985; Wilhite,
1993) tend to emphasize four key aspects: the slow onset of droughts, the
multidisciplinary and multisectoral nature of droughts, the multidimen-
sionality of droughts (intensity, duration, and extent), and the complexity
of drought impacts. Updates to this work tend to emphasize the need to
develop integrated decision support systems (Pulwarty and Sivakumar,
2014; Wilhite and Pulwarty, 2017) and the ability to develop early warn-
ing systems that effectively utilize both climate forecasts and Earth obser-
vations (Mariotti et al., 2013; Mo et al., 2012; Shukla et al., 2013). In this
chapter, we describe the four key aspects of droughts, then briefly sum-
marize some of the major challenges and opportunities facing 21st-
century DEWS.

2.3 Slow-onset disasters

While complex, and difficult to define and identify, droughts are one of
the most common natural disasters. In 2016, for example, a review of
disaster statistics (Guha-Sapir et al., 2017) found that droughts accounted
for 69.1% of all the people affected by disasters. Three hundred and
ninety-three million people, the greatest number on record, were affected
by droughts in 2016. Most of these people (330 million) lived in India,
which experienced severe El Niño-induced rainfall deficits. Like most
droughts, the 2016 crisis in India resulted in multiple days of dry weather.
Unlike fires or floods, droughts are slow-onset disasters. This obviously not
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only provides an opportunity for early warning but also poses a barrier to
action. When do we transition from a streak of hot, dry weather to disas-
ter? As we shall see later, answering this question requires context.
Droughts involve unmet water demands. Quantifying these demands and
the impacts of water deficits is a critical component of modern drought
early warning. Droughts are multifaceted, largely because the impacts of
drought can arise in many ways, “being direct or indirect, either singular
or cumulative, immediate or delayed” (Asfaw, 1983, in Wilhite, 1993).
The multidimensional and multidisciplinary nature of droughts makes
them difficult to understand and identify.

2.4 Quantifying drought magnitude in multiple dimensions

Drought magnitudes are typically categorized using three dimensions—their
temporal duration, severity, and extent (Sheffield and Wood, 2012; Wilhite
and Glantz, 1985), with timing being an important aspect as well. Drought
impacts are typically defined in reference to a specific sector or discipline,
such as agriculture. Examples of duration, severity, and extent types of magni-
tude categorization might include “Observers fear that two years of
drought will soon become famine in Somalia”1 (duration), or “Ethiopia
struggles with the worst drought in 50 years”2 (severity), or “More than
half of Continental states experiencing extremely dry conditions”3 (extent).

One widely used system in the United States is the Drought Classification
used by the U.S. Drought Monitor4 (Svoboda et al., 2002). This classification
system ranges from not-dry to abnormally dry (D0), moderate drought (D1),
severe drought (D2), extreme drought (D3), and exceptional drought (D4).
These classifications are based on multiple indicators: the Palmer Drought
Severity Index (Chapter 8: Theory�Indices for Measuring Drought Severity),
Climate Prediction Center Soil Moisture Percentiles, U.S. Geological Survey
streamflow percentiles, Standardized Precipitation Index (Chapter 8:
Theory�Indices for Measuring Drought Severity) values, and objective
drought indicator values. These quantitative metrics are augmented by local
reports from more than 350 expert observers in a consultative process.

1 https://news.nationalgeographic.com/2017/03/drought-somalia-puntland/
2 https://www.telegraph.co.uk/news/2016/04/23/ethiopia-struggles-with-worst-
drought-for-50-years-leaving-18-mi/

3 https://www.huffingtonpost.com/2012/07/06/us-drought-2012-heat-
wave_n_1654908.html

4 http://droughtmonitor.unl.edu/AboutUSDM/DroughtClassification.aspx
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Fig. 2.1 shows the April 10, 2018 U.S. Drought Monitor Map. The map
is dominated by La Niña-like drought patterns affecting the southwestern
and southeastern United States. The central southwest (Utah, Colorado,
Oklahoma, Kansas, Texas, and New Mexico) comprises the driest states,
with dry conditions ranging from moderate to exceptional drought.

The U.S. Drought Monitor data can be expressed as a time series.
Fig. 2.2 (top) shows the fraction of the continental United States
experiencing dry (D0), moderate drought (D1), severe drought (D2),
extreme drought (D3), or exceptional drought (D4). This figure manages
to convey both the extent and overall magnitude of the U.S. drought.
The greatest overall extent of drought appears during 2012 and early
2013, when most of the United States experienced dry conditions (as dis-
cussed in more detail later). The greatest recent spatial extent of excep-
tional drought (D4) occurred during 2011 when severe dryness
encompassed virtually all of Texas and much of its neighboring states. A
similar time series for a smaller homogeneous climate zone (in this case
the South Coast Drainage Area of southern California, where the authors
reside) gives us a sense of the duration of drought. This region has been

Figure 2.1 U.S. Drought Monitor for April 10, 2018. http://droughtmonitor.unl.edu/
(accessed 12.04.18).
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Figure 2.2 U.S. Drought Monitor time series for the Continental United States (top) and the California South Coast Drainage (bottom).
http://droughtmonitor.unl.edu/ (accessed 12.04.18).
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in some state of continuous drought since 2012, with a remarkable run of
exceptional drought (D4) stretching from 2014 through early 2017, when
an atmospheric river event brought some relief to the area. Atmospheric
rivers are narrow bands of very moist air that form over the oceans.
When they move over land, they can cause intense precipitation.

In addition to duration, severity, and extent, timing is an important
but nebulous component of drought early warning. The timing aspect is
highly context-sensitive. For example, depending on the growing stage of
the crop, late-season dry conditions could spell disaster (if the plants are
still in the grain-filling stage), or a benefit to farmers—if this growth is
complete, since late-season dry conditions make it easier to harvest and
store grain without waste and spoilage. In an area with a well-developed
water management and storage system, an intense storm might simply
provide a beneficial replenishment of reservoirs and aquifers. The same
storm in a country without such infrastructure might result in widespread
flooding, property loss, and even loss of life.

2.5 Impact-based sectoral or disciplinary definitions of
drought

Definitions of droughts also vary according to the perspectives offered by
different disciplines (Wilhite, 1993). Different disciplines can offer unique
and important ways of examining, quantifying, and evaluating drought
impacts. Meteorological, agricultural, hydrologic, and socioeconomic fra-
meworks are common bases for drought evaluations. Typically, these
impacts affect three principal sectors: economic, environmental, and social.
Table 2.3, based on Wilhite’s (1993) seminal paper, lists some of the pri-
mary impacts associated with these sectors. Economic impacts include
direct agricultural losses, losses from related industries such as forestry and
fisheries, and losses from the recreation, transportation, banking, and
energy industries. A notable set of recent economic losses occurred in the
United States in 2012, when total economic impacts exceeded 30 billion
dollars (Guha-Sapir et al., 2017).

Less direct, but potentially very damaging, impacts can include disrup-
tions in food supply and increases in food prices. Such impacts can, in
fact, be felt far afield. For example, United States, Asian, and Australian
droughts between 2008 and 2012 helped create a jump in global food
prices, which, in turn, helped increase prices in East Africa (Davenport
and Funk, 2015). Famine is ultimately caused by an inability to purchase
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Table 2.3 Classification of drought-related impacts.

Problems
sectors

Impacts

Economic Loss from crop production
annual and perennial crop losses; damage to crop quality
reduced productivity of cropland (wind erosion, etc.)
insect infestation
plant disease
wildlife damage to crops

Loss from dairy and livestock production
reduced productivity of rangeland
forced reduction of foundation stock
closure/limitation of public lands to grazing
high cost/unavailability of water for livestock
high cost/unavailability of feed for livestock
high livestock mortality rates
increased predation
range fires

Loss from timber production
forest fires
tree disease
insect infestation
impaired productivity of forest land

Loss from fishery production
damage to fish habitat
loss of young dish due to decreased flows

Loss of national economic growth, retardation of economic
development

income loss for farmers and others directly affect
Loss from recreational businesses
Loss to manufacturers and sellers of recreational equipment
Increased energy demand and reduced supply because of

drought-related power curtailments
Costs to energy industry and consumers associated with

substituting more expensive fuels (oil) for hydroelectric
power

Loss of industries directly dependent on agricultural
production (e.g., machinery and fertilizer manufacturers,
and food processors)

Decline in food production/disrupted food supply
increase in food prices
increased importation of food (higher costs)

(Continued)
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Table 2.3 (Continued)

Problems
sectors

Impacts

Unemployment from drought-related production declines
Strain on financial institutions (foreclosures, greater credit
risks, capital shortfalls, etc.)

Revenue losses to federal, state, and local governments (from
reduced tax base)

Revenues to water supply firms
revenue shortfalls
windfall profits

Loss from impaired navigability of streams, rivers, and canals
Cost of water transport or transfer
Cost of new or supplemental water resource development

Environmental Damage to animal species
wildlife habitat
lack of feed and drinking water
disease
increased vulnerability to predation (e.g., from species
concentration near water)

Wind and water erosion of soils
Damage to fish species
Damage to plant species
Water quality effects (e.g., salt concentration)
Air quality effects (dust, pollutants) visual and landscape
quality (dust, vegetative cover, etc.)

Social Food shortages (decreased nutritional level, malnutrition
famine)

Loss of human life (e.g., food shortages and heat)
Public safety from forest and range fires
Conflicts between water users
Health-related low flow problems (e.g., diminished sewage
flows and increased pollutant concentrations)

Inequity in the distribution of drought impacts/relief
Decreased living conditions in rural areas
Increased poverty
Reduced quality of life
Social unrest and civil strife
Population migration (rural to urban areas)

Source: Recreated by Shukla and Funk (2019) based on Wilhite, D.A., 1993. The enigma of drought.
In: Drought Assessment, Management, and Planning: Theory and Case Studies. Springer, pp. 3�15
original; modified from Wilhite, D.A., 1993. The enigma of drought. In: Drought Assessment,
Management, and Planning: Theory and Case Studies. Springer, pp. 3�15.
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food (Sen, 1981). High global prices, local drought, and civil war com-
bined in 2011 to produce widespread famine in Somalia (Checchi and
Robinson, 2013; Hillbruner and Moloney, 2012).

Droughts can also have profound impacts on ecosystems, and the cost
of these impacts, like ecosystem services, can be hard to quantify. Drought
can impact animal species by affecting wildlife habitats, food supplies,
drinking water, disease, and predation. Droughts and elevated tempera-
tures, especially when they occur repeatedly, can have extremely damag-
ing impacts on plants. For example, repeated droughts and dry conditions
have led to widespread tree mortality in California, with the U.S. Forest
Service estimating 129 million dead trees from 2010 to 2017 (Fig. 2.3).

Figure 2.3 2012�17 California tree mortality. http://egis.fire.ca.gov/
TreeMortalityViewer/ (accessed 09.04.18.).
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Droughts, finally, can have profound societal impacts. At the individ-
ual or household level, droughts can lead to either chronic malnutrition,
acute malnutrition, or sometimes even famine. In some cases, extremely
warm temperatures alone can lead to death. For example, in 2015, a heat
wave led to more than 2500 deaths, as India and Pakistan experienced
deadly heat waves that exceeded 45°C (113°F) (Wehner et al., 2016). In
very warm places without air conditioning, relatively modest increases in
air temperatures can push the level of warmth to dangerous levels. In
India, increases in temperature-related mortality seem likely associated
with climate change (Mazdiyasni et al., 2017). In later chapters, we discuss
how these Indian climate extremes are probably related to El Niño and
may be at least partially predictable.

Many different disciplines all have valid and useful definitions of
drought, leading to meteorological, agricultural, hydrological, and
socioeconomic definitions of droughts. Droughts may be defined using
meteorological definitions, such as when a location receives less than
200 mm (B8 in.) of rainfall during a 3-month period. Agricultural
thresholds may also be used, such as when weather conditions are
likely to produce a 20% reduction in yields. Agricultural outcomes are
often very sensitive to the timing and location of water and heat stress.
Crops are most sensitive when they switch their biological growth pri-
orities to focus on “grain filling” because they stop adding green bio-
mass and focus on growing reproductive grains—like corn and
soybeans. Spatially, the location of droughts is critical to agriculture.
Only 12% of the Earth’s ice-free land surface is devoted to agriculture
(Ramankutty et al., 2008).

Another important component to analyze is hydrology. A drought
might arise when a river’s rate of streamflow falls below a 1-in-10-year
mark, while a reservoir falls beneath a certain minimum storage, or when
a city exhausts its water supplies, like Cape Town, South Africa reaching
their “Day Zero.” Hydrologic droughts can be a complicated function of
groundwater reserves, water management, and storage capabilities, as well
as snowpack levels and the detailed specifics of the distribution of daily
precipitation events.

The socioeconomic context in which we all live adds yet another
potential disciplinary perspective. A similar hydrologic shock or precip-
itation deficit may have vastly different socioeconomic impacts,
depending on the context, as illustrated in the next section of this
chapter.
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2.6 Contrasting recent U.S. and southern African droughts

To help clarify some of the concepts described here, we briefly consider
and contrast the massive 2012 drought in the United States (Rippey,
2015) and the extensive 2015/16 drought across almost every country in
southern Africa (Archer et al., 2017). In the central United States, the
2012 March to August (Fig. 2.4A) and June to August (Fig. 2.4B) air tem-
peratures were some of the highest on record and precipitation totals
were among some of the lowest, similar in magnitude to the dust bowl
years of 1934 and 1936 (Rupp et al., 2013). Air temperatures and precipi-
tation tend to be inversely correlated; rainfall deficits can reduce evapora-
tion, leading to increases in surface temperatures. In 2015/16, El Niño-
related climate impacts resulted in one of the worst droughts in 35 years
across southern Africa (FEWS NET, 2016). In both cases, these severe
droughts greatly reduced agricultural crop production.

Figure 2.4 Central U.S. temperatures and rainfall for (A) the entire March�August
growing season and (B) summer June�August. Figure 1 from Rupp, D.E., Mote, P.W.,
Massey, N., Otto, F.E., Allen, M.R., 2013. Human influence on the probability of low pre-
cipitation in the central United States in 2012. Bull. Am. Meteorol. Soc. 94, S2.
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In the United States (Rippey, 2015), corn yields dropped dramatically.
According to the U.S. Government’s official disaster designations
(Fig. 2.5), 5168 out of 6145 counties (84%) in the contiguous United
States were considered to have experienced primary drought disasters.
Estimated drought losses included B4 billion bushels of corn, about 170
million bushels of soybeans, and 87 million bushels of sorghum, with an
economic value of more than 30 billion dollars (Rippey, 2015). These
crop production losses resulted in a dramatic jump in U.S. corn prices
(Fig. 2.6). Unadjusted (nominal) wholesale corn prices jumped from about
180 dollars in 2010 to 300 dollars in 2012.

While the U.S. droughts in 2011 and 2012 were associated with a La
Niña event, the severe southern African drought of 2015/16 was associ-
ated with one of the strongest El Niño events on record (Funk et al.,
2016, 2017). The timing and pattern of the 2015/16 drought was particu-
larly harmful to crop (maize/corn) production. Mid-season
(December�February) rains failed just as most corn plants were entering
their germinating or grain-filling stages. Spatially, the extent of the 2015/
16 drought encompassed both the highly productive maize triangle in
eastern South Africa, as well as the farms of millions of subsistence farmers
in Zimbabwe, Mozambique, southern Madagascar, Malawi, and Zambia.

Figure 2.5 U.S. disaster designations—August 2012. https://www.fsa.usda.gov/Assets/
USDA-FSA-Public/usdafiles/Disaster-Assist/disaster_map_cropyr_2012.pdf.
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These shocks led to a severe (B20%) regional crop-production deficit,
and a corresponding large jump in cereal prices.

The 2012 U.S. and 2015/16 southern African droughts were broadly
similar in magnitude and agricultural impacts—both were 1-in-20-to-30-
year droughts that substantially reduced regional crop production, driving
up cereal prices. The socioeconomic impacts of these droughts were vastly
different. While estimates of the 2012 U.S. droughts were substantial in
terms of total magnitude, B1% of the U.S. Gross Domestic according to
economic analysts5 and about 34 billion dollars according to estimates of
billion-dollar disasters from the National Center for Environmental
Information,6 the economic impact on most U.S. households was limited.
Most people in the United States, however, are not involved, even indi-
rectly, with work activities that rely on agriculture. Middle-income fami-
lies in the United States spend about 13% of their income on food, while
the poorest 20% of Americans spend about 35%. This tendency for poorer

Figure 2.6 Unadjusted (nominal) U.S. corn prices. Credit: Funk, based on data from
the World Bank.

5 http://www.bloomberg.com/news/2012-11-12/u-s-drought-may-cut-gdp-by-one-per-
centage-point-deutsche-says.html

6 https://www.ncdc.noaa.gov/billions/time-series
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households to spend more of their income on food is known to econo-
mists as Engel’s Law, so named after the 19th-century statistician Ernst
Engel. In the United States the actual cost of food in a supermarket is
weakly related to commodity prices, since shipping, manufacturing, and
advertising typically account for most of the production costs. So, even
though the 2012 drought was very large by meteorological, agricultural,
and hydrological criteria, its socioeconomic impacts were limited.

The socioeconomic impacts of the southern African drought offered a
stark contrast. Exceptionally warm El Niño conditions produced wide-
spread drought and reduced streamflow and reservoir levels across much of
southern Africa (Funk et al., 2016, 2017, 2018). These rainfall deficits had
both primary and secondary impacts on poor households. In many cases,
and immediate impact was the reduction in both household food supplies,
as well as household incomes obtained from selling produce or working
on nearby farms. A secondary, but equally serious problem, arose from the
increase in regional food prices, thereby illustrating how droughts can trig-
ger indirect effects that reverberate across international markets. Poor farm-
ers in places like Malawi faced increased food insecurity, in part due to the
spatially remote failure of farms located in South Africa’s maize triangle—
by far the largest single source of corn in southern Africa.

Fig. 2.7 shows retail maize prices—how much a poor household
would pay for a kilogram in two local markets located in Lunzu and
Nsanje, Malawi. At both locations, prices were more than twice the
values from years past. When interpreting these numbers, it is important
to keep in mind two facts. First, the poorest (lowest 20%) of households
in countries such as Malawi typically spend most of their money each
month on food (60% or even 70% of their household income). Second,
the poorest households in poor countries have extremely limited eco-
nomic purchasing power. When food prices double, these households
have very limited means to make up the difference. During the 2015/16
southern African drought, economic shocks and associated food price
increases pushed 16 million people into severe food insecurity (Funk
et al., 2018).

2.7 Chapter review

In this chapter, we have examined various definitions of drought, as well
as the challenges and opportunities provided by the particular and com-
plex nature of droughts.
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Figure 2.7 FEWS NET Maize Prices in Malawi 2016. FEWS NET Market and Price Bulletin http://www.fews.net/sites/default/files/documents/
reports/Southern_Africa_2016_09_PB.pdf (accessed 12.04.18).

http://www.fews.net/sites/default/files/documents/reports/Southern_Africa_2016_09_PB.pdf
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Droughts are slow-onset disasters that always involve a shortage of
water. Yet while they are an extremely common natural disaster, droughts
can be hard to identify and predict, in part because they can impact peo-
ple, ecosystems, and economies in many different ways (Fig. 2.8).
Ultimately, however, droughts always involve an interplay of water supply
and water demand, and their magnitude can typically be categorized in
terms of intensity, duration, and extent. Timing may play a critical role as
well. For example, a brief drought during the peak of a corn (maize)
growing season may limit the supply of moisture to crops just when the
demand for water to grow the size of the corn kernels is at a maximum.
So, a relatively short drought in a limited spatial domain might have a
large impact if this drought arose in a key growing area at the peak of

Figure 2.8 Drought viewed in a systems context. Katie O’Brien, Recreation of Figure 2
from Wilhite, D., Glantz, M., 1985. Understanding the Drought Phenomenon: The Role of
Definitions, vol. 10. pp. 111�120.
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grain filling or germination. Human drought impacts, furthermore, always
arise in a human socioeconomic landscape. Contrasting recent severe
droughts in the United States and southern Africa, we highlighted the
very different food security outcomes associated with similar large water
deficits and agricultural impacts.

In the next chapter, we explore, more completely, some current state-
of-the-science DEWS.
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CHAPTER 3

Drought early warning systems

As illustrated in Table 2.3 in Chapter 2, Drought Early Warning—
Definitions, Challenges, and Opportunities, drought early warning seeks to
anticipate a myriad of different types of drought-related impacts. To address
any one of these impact categories would almost certainly involve more
expertise than any one person is likely to possess. Modern drought early
warning systems (DEWS), therefore, consistent of multidisciplinary teams that
examine, in detail, different types of drought risk and impact (Hao et al.,
2017). As discussed in Chapter 2, Drought Early Warning—Definitions,
Challenges, and Opportunities, integrated approaches to drought risk reduc-
tion stand on three pillars (Wilhite and Pulwarty, 2017): monitoring and early
warning and information delivery systems, vulnerability and impact assess-
ment, and mitigation and response. In later chapters, we will focus on the
different “tools of the trade” that inform the monitoring and drought early
warning pillar. Before going into these important details, however, we will
describe two current state-of-the-science DEWS: the U.S. National
Integrated Drought Information System (NIDIS, www.drought.gov) and the
U.S. Agency for International Development (USAID)�funded Famine Early
Warning Systems Network (FEWS NET). These systems were selected
because they provide an excellent example of a multisectoral DEWS
(NIDIS) in a data-dense region (the continental United States, CONUS) and
a domain-specific system (FEWS NET), focused on food insecurity in data-
sparse regions of the developing world.

3.1 The U.S. National Integrated Drought Information System

NIDIS, in partnership with the University of Nebraska-based National
Drought Mitigation Center (NDMC), “jointly support or conduct impact
assessment, forecast improvement, indicators and management triggers . . .
and the development of portals” (Pulwarty and Sivakumar, 2014). The
genesis of NIDIS began with a 2000 report, “Preparing for Drought in
the 21st Century1.” This report advocated that the United States would

1 http://govinfo.library.unt.edu/drought/finalreport/fullreport/reportdload.htm
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benefit from developing policy that promoted drought preparedness. This
report also encouraged partnerships among Federal, nonfederal, and pri-
vate agencies to develop appropriate tools and drought preparedness strat-
egies. Eventually, these efforts led to Public Law 109�430, authorized by
Congress in 2006. This law authorized the National Oceanic and
Atmospheric Administration’s (NOAA) NIDIS program. NIDIS has an
interagency mandate to coordinate and integrate drought research, build-
ing upon existing federal, tribal, state, and local partnerships in support of
creating a national drought early warning information system.

NIDIS “utilizes new and existing partner networks to optimize the
expertise of a wide range of federal, tribal, state, local and academic part-
ners in order to make climate and drought science readily available, easily
understandable and usable for decision makers; and to improve the capac-
ity of stakeholders to better monitor, forecast, plan for and cope with the
impacts of drought2.”

NIDIS—along with its Federal, Tribal, state, local, and private sector
partners—develops leadership and partnerships, collects and integrates
information, fosters and supports a research environment, and provides
accurate, timely, and integrated information. While a detailed description
of NIDIS is beyond the scope of this book, it is worth noting NIDIS’
very well-developed multisectorial, multiregional monitoring and drought
early warning capacity. At a national scale, such a system is difficult
because (see footnote 2) . . . “Drought in Maine looks different from
drought in New Mexico. When seeking indicators of drought, a place
which depends on snowpack for its annual water supply must monitor
different factors from a place where liquid precipitation determines the
hydrology. And local economies, resources and values influence the
responses of government, business, and the public to drought prediction,
conditions and aftermath”.

Fig. 3.1 displays a 2019 snapshot of the main NIDIS portal.3 Based on
our definitions of drought, we can recognize descriptions of location and
magnitude, expressed as a percent of area (29.7% of CONUS) and popu-
lation (60.4 million people in CONUS). The text across the bottom of
the page describes recent meteorological conditions, we will briefly discuss
the five drought information products displayed as maps across the center
of the page: the U.S. Drought Monitor, the U.S. Seasonal Drought

2 https://www.drought.gov/drought/what-nidis
3 www.drought.gov

44 Drought Early Warning and Forecasting

https://www.drought.gov/drought/what-nidis
http://www.drought.gov


Outlook, the Drought Impacts Report, the Wildfire Risks assessment,
and the Snow Drought assessment.

As discussed in Chapter 2, Drought Early Warning—Definitions,
Challenges, and Opportunities, the U.S. Drought Monitor4 (Svoboda
et al., 2002) classifies droughts into five categories: abnormally dry (D0),
moderate drought (D1), severe drought (D2), extreme drought (D3), and
exceptional drought (D4). These classifications are based on multiple indi-
cators such as the Palmer Drought Severity Index (PDSI, Chapter 8:
Theory—Indices for Measuring Drought Severity), Climate Prediction
Center Soil Moisture Percentiles (Chapter 5: Tools of the Trade 2—Land
Surface Models), U.S. Geological Survey (USGS) streamflow percentiles,
Standardized Precipitation Index (SPI, Chapter 8: Theory—Indices for
Measuring Drought Severity) values, and other objective drought indica-
tor values. These quantitative metrics are augmented by local reports from
more than 350 expert observers in a consultative process. The PDSI is an
index, developed by W.C. Palmer in 1965, that uses rainfall and tempera-
ture data to estimate soil moisture stress. Fig. 3.2 shows a map of mid-
April 2018 PDSI and a 1920�2018 time series of PDSI for Arizona. The
advantage of PDSI is that it can be computed directly from climate obser-
vations, allowing calculation over a long period of record. However, the
index does not take snowpack into account, an important source of water
in most of the western United States. The PDSI can be slow to detect
rapidly developing droughts. Fig. 3.2 (left panel) shows a map of April

Figure 3.1 Snapshot of www.drought.gov from April 16th. Courtesy: NIDIS www.
drought.gov.

4 http://droughtmonitor.unl.edu/AboutUSDM/DroughtClassification.aspx
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Figure 3.2 (Left) PDSI map from U.S. Drought Monitor from April 16th. (Right) Time series of monthly march Arizona PDSI data from
NOAA ESRL. ESRL, Earth Systems Research Laboratory; PDSI, Palmer Drought Severity Index. Courtesy: http://droughtmonitor.unl.edu; and
https://www.esrl.noaa.gov.

http://droughtmonitor.unl.edu
https://www.esrl.noaa.gov


2018 PDSI for CONUS. Values of less than 22 indicate a moderate or
worse drought. What we see is a tendency for dry conditions in the
southern southwestern United States and relatively wet conditions over
the central eastern United States. Arizona shows up as the state with the
most severe dryness, and a time series of March PDSI values for Arizona
(Fig. 3.2 right) indicates a series of dry spring conditions from 2011
onward. According to the PDSI, Arizona is experiencing a substantial and
protracted drought.

We can confirm the PDSI-indicated dryness using two completely
independent sources of information—mountain snowpack data and river
streamflow observations. In operational drought early warning applica-
tions, it is generally a standard practice to examine multiple sources of
information for potential convergence of evidence. All sources of infor-
mation contain errors and uncertainties. When drought analysts see con-
vergence among multiple sources of independent data sets, they can be
more confident in their results. NIDIS and the U.S. Drought Monitor
provide a very robust collection of independent data sets.

Fig. 3.3 left shows mountain snowpack data collected by the National
Water and Climate Center, the Natural Resources Conservation Service,
and the U.S. Department of Agriculture. These values are expressed as
percentages of the 1981�2010 median. Across most of the central and

Figure 3.3 (Left) PDSI map from U.S. Drought Monitor from April 16th. (Right) Time
series of monthly Arizona PDSI data from NOAA ESRL. ESRL, Earth Systems Research
Laboratory; PDSI, Palmer Drought Severity Index. Courtesy: http://droughtmonitor.unl.
edu; and https://www.esrl.noaa.gov.
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southern western United States, we see below-normal snowpack levels—
ranging from 70% to less than 20% of normal. In Arizona, New Mexico,
southern Colorado, and southern Utah, we find very low snowpack
levels. We would have to do more detailed analysis to determine whether
these low snowpack levels were caused by low precipitation totals, or
warm temperatures, or both, but these data, like the PDSI, suggest dry
conditions in this region. In many cases, accurate snowpack observations
in spring provide excellent “forecasts” of future summer water supply. In
many drier, mountainous areas, lower elevation ecosystems and agriculture
depend on spring and summertime snowmelt from alpine glaciers.
Snowpack observations, like those shown in Fig. 3.3 left, are augmented
by additional NIDIS monitoring tools,5 such as estimates of Snow Water
Equivalency (SWE). SWE estimates are based on snowpack estimates
derived from a land surface model (Chapter 5: Tools of the Trade 2—
Land Surface Models). These gridded estimates are typically less certain
than snowpack observations but have much better spatial coverage.
Advanced web-based mapping tools, like the Climate Engine,6 can be
used to provide detailed, up-to-date SWE maps.7

USGS streamflow observations (Fig. 3.3 right) provide yet another
independent source of hydrological information. Such observations can be
particularly valuable because stream gauge observations reflect not just the
local precipitation, but the overall hydrologic balance in the entire water-
shed above our gauging location. Depending on our target application,
stream gauge data may be very relevant, or not. If we are a farmer
depending on rainfed agriculture, the streamflow of a river flowing 10 mi
from our farm may be quite irrelevant. To a reservoir operator or hydro-
power company, however, such information could be extremely useful.

A fourth source of information provided by NIDIS, and particularly
germane to the goals of this book, is the U.S. Seasonal Drought Outlook,8

published by the Climate Prediction Center on the third Thursday of each
month. These outlooks “depict large-scale trends based on subjectively
derived probabilities guided by short- and long-term statistical and dynam-
ical forecasts.” These guidelines are based on initial conditions derived from
soil moisture, current snowpack, reservoir levels, and weather and climate

5 https://www.drought.gov/drought/data-maps-tools/snow-drought
6 https://app.climateengine.org/
7 http://goo.gl/5fDxnm
8 http://www.cpc.ncep.noaa.gov/products/expert_assessment/sdo_summary.php
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forecasts. Climatology also plays a major role. When we are entering a dry
time of year, it is very likely that dry conditions are likely to persist. Simple
as this may sound, such statements are very powerful, and a major objective
of effective drought early warning. As we progress through a rainy season,
approaching and then passing the time of peak precipitation and providing
timely and accurate assessments of the likelihood of drought recovery is an
extremely important aspect of DEWS.

The U.S. Seasonal Drought Outlook begins with the observation-
based U.S. Drought Monitor, focusing on those areas of moderate or
worse (D1 or higher) drought. Drought early warning specialists then pre-
dict if these regions are likely to stay the same, get better, or get worse.
Areas of likely new drought development are also identified.

Systems such as NIDIS, and their many collaborating partners, leverage
a vast array of observational data sets and climate model predictions (based
on ocean, atmosphere, and land surface models) to characterize drought
and drought impacts across the developing world. While we have focused
on DEWS products for the CONUS, much of the important work car-
ried out by NIDIS is via subnational, regional DEWS,9 regional climate
centers,10 and state-level early warning systems.11 Systems such as NIDIS
extend far beyond forecast systems (Pulwarty and Sivakumar, 2014), com-
bining monitoring and early warning and information delivery systems,
vulnerability and impact assessments, and mitigation and response planning
and policy. Focusing just on the early warning component, achieving this
objective requires interoperations across many spatial scales—linking
watersheds and farms with global climate features such as El Niño and La
Niña, and temporal scales—linking near real-time observations with ante-
cedent conditions and forward-looking predictions. Bringing in vulnera-
bility and impact assessments and mitigation and response planning/policy
adds a much greater level of complexity, a complexity that hopefully links
decision makers at local, regional, and national scales.

Systems such as NIDIS succeed and typically become more successful,
because practitioners and stakeholders practice and adapt. Effective DEWS
learn from their mistakes, and the DEWS participants learn over time how
to better refine and communicate their information, needs, and wants.

9 https://www.drought.gov/drought/regions/dews
10 https://www.drought.gov/drought/regions/rcc
11 https://www.drought.gov/drought/regions/states
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The USAID FEWS NET (www.fews.net) provides another useful
example of a successful DEWS. Like NIDIS, it is well-developed, com-
plex, and effective. Unlike NIDIS, it is focused on a very particular type
of drought—drought leading to severe food insecurity in the developing
world. The nature of this remit also results in a tendency to work in data-
sparse regions—regions without dense weather station networks, stream
gauge observations, or snowpack measurements. To understand this differ-
ence, we can plot the number of monthly precipitation gauge observa-
tions used in one FEWS NET rainfall monitoring product—the Climate
Hazards Center (CHC) InfraRed Precipitation with Stations (CHIRPS)
archive (Funk et al., 2015c) (Fig. 3.4). In the entire United States, we find
a minimum of about 5900 stations. In Africa (excluding South Africa), we
find a maximum of about 3400, but this number declines to around 500
in the late 2010s.

3.2 The Famine Early Warning Systems Network

Originally formed in response to the Sahel droughts of 1984 and 1985
(Brown, 2008), FEWS NET (www.fews.net) supports the USAID

Figure 3.4 Number of monthly station observations used in the CHIRPS satellite-
gauge gridded precipitation time series. (Top) United States and (bottom) all of
Africa. CHIRPS, Climate Hazards Center InfraRed Precipitation with Stations. Courtesy:
Pete Peterson, Climate Hazards Group, University of California, Santa Barbara.
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Food for Peace (FFP) program’s mission to support a world free from
hunger and poverty, where all people live in dignity, peace, and secu-
rity. FEWS NET is a tightly focused DEWS that also includes a highly
developed analytical framework that seeks the rapid identification of
emerging crisis-level (near-famine) outbreaks of acute food insecu-
rity.12 The timely and spatially focused alerts and outlooks provided
by FEWS NET help FFP and partner agencies provide effective and
early humanitarian assistance, helping to save lives and livelihoods
among some of the world’s most food-insecure populations. Here, we
will provide an overview of FEWS NET, with a focus on the climate
monitoring and prediction aspects of FEWS NET. These activities are
primarily carried out by three U.S. Government science agencies: the
USGS, the National Oceanic and Aeronautic Administration, and
the National Aeronautics and Space Agency (NASA) (Fig. 3.5). The
University of California Santa Barbara’s CHC provides major science
support to the USGS and also employs full-time field scientists in
Africa and Central America. The U.S. Department of Agriculture,
University of Maryland�led Food Security and Agriculture
Consortium, and NASA/USAID SERVIR program also contribute to
FEWS NET’s agroclimatic monitoring efforts. FEWS NET also works
closely with collaborating agencies located in Africa13 and Europe.14

FEWS NET’s laser focus on food insecurity makes it different than
most DEWS. This focus, and a more than three decade-long opportu-
nity to refine its approach, has allowed FEWS NET to develop a very
effective system for food security�related drought early warning. We
will briefly describe the FEWS NET household food economy
approach, current food security conditions, and the current Food
Security Outlook process, as supported by the interagency FEWS
NET science team. This outlook process will be the main focus of our
discussion, and we will highlight areas where important scientific
advances are allowing for more effective early warning.

12 FEWS NET currently monitors 22 countries in Africa, Yemen, Afghanistan, Haiti, and
Central America.

13 A partial list of these groups would include AGRHYMET in Niamey, Niger; the
IGAD Climate Predication and Applications of Centre and Regional Centre for
Mapping and Resource Development in Nairobi; the SADC Climate Services Center
in Gabarone, Botswana; and many national meteorological agencies.

14 The WFP, FAO, Joint Research Centre, and European Commision.
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3.3 Famine Early Warning Systems Network Food Security
Outlooks

In general, clearly defined definitions of hazards and impacts increase the
effectiveness of decision support systems. FEWS NET, in collaboration
with other agencies such as the United Nations World Food Programme
(WFP) and Food and Agriculture Organization (FAO), the European
Commission, the African Permanent Inter-State Committee for Drought
Control in the Sahel, and The InterGovernmental Authority on
Development (IGAD), and nongovernmental agencies such as CARE and
OXFAM, uses the international Integrated Phase Classification (IPC) sys-
tem to provide consistent evidence-based assessment of severe food

Figure 3.5 Famine Early Warning Systems diagram. Courtesy: Chris Funk, after drawing
from FEWS NET.
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insecurity. The IPC is based on an analytical framework that addresses the
multidimensional nature of food security issues. The IPC provides an
international standard that classifies households or groups of people as fac-
ing nonstressed, stressed, crisis, emergency, or famine conditions.

In 2018 FEWS NET estimates that some 76 million people (one out
of every hundred humans) in 45 countries are in IPC phase 3 or higher.
Nigeria, South Sudan, Yemen, and Somalia faced the specter of famine.
These totals are up 60% since 2015, and a substantial portion of these
increases was associated with the severe 2015/16 El Niño and the period
of severe La Niña�like climate that followed. As we will describe later, El
Niños and La Niñas are associated with exceptionally warm sea surface
temperatures (SSTs) in either the eastern or western tropical Pacific.

Time series of estimates of severely food-insecure East Africans
(Fig. 3.6) indicate a substantial increase since 2011, and 2011 was identi-
fied as a severe drought year. At the peak of the 2011 Somali famine,
some 12.6 million people are thought to have experienced prefamine
conditions. In Somalia in 2011 more than 258,000 people perished,
including 1 out of every 10 children under the age of 5 in the southern
and central parts of the country (Checchi and Robinson, 2013; Hillbruner
and Moloney, 2012). In 2017 at the peak of a similar series of La
Niña�induced droughts, almost three times as many East Africans faced
severe food insecurity. Somalia was particularly punished, receiving a
series of poor rainy seasons in the spring of 2016, the fall of 2016, the
spring of 2017, and the fall of 2017.

A core deliverable of FEWS NET is the Food Security Outlooks
(FSOs). FEWS NET uses a scenario development process15 based on live-
lihoods, a household food economy framework, and assumptions about
future climate conditions, prices, conflict, food supplies, nutrition, labor,
and other factors to develop likely subnational food security conditions
for the next 1�8 months. “The strength of a scenario depends upon the
development of evidence-based and well-informed assumptions about the
future . . .. FEWS NET’s analysis is livelihoods-based: all steps of scenario
development are grounded in an understanding of how households in an
area access food, earn income, and cope with shocks.16”

15 https://www.fews.net/sites/default/files/documents/reports/
Guidance_Document_Scenario_Development_2018.pdf

16 https://www.fews.net/sites/default/files/documents/reports/
Guidance_Document_Rainfall_2018.pdf
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FEWS NET’s approach to incorporating weather and climate informa-
tion typically follows a three-step progression. First, before the beginning
of the rainy season, historical information is used to understand the clima-
tology of the region, spatial patterns of exposure and vulnerability, and
recent trends or changes in climate that could influence the outcome of
the season. Secondly, several months before the growing season begins,
various climate modes, such as the El Niño�Southern Oscillation (Hoell
and Funk, 2013a; Hoell et al., 2013, 2014a,b, 2015; Korecha and
Barnston, 2007), Indian Ocean Dipole (IOD), North Atlantic Oscillation
(NAO) (Behera et al., 2005; Bekele-Biratu et al., 2018; Saji et al., 1999),
Subtropical IOD (SIOD) (Hoell et al., 2017), or West Pacific Warming
Mode (WPWM) (Funk and Hoell, 2015, 2017), may be evaluated and
linked to potential climate forecasts. Third, as we approach the onset of
the rainy season, climate forecasts from models, statistical analysis, and cli-
mate outlook forums are evaluated. Climate modes and forecast outlooks
are examined on a monthly basis by NOAA, FEWS NET field scientists,
the USGS, and CHC partners. Finally, as the season commences, FEWS
NET incorporates monitoring data from remote sensing and other
sources.

3.4 Multistage early warning—an Ethiopia example

Fig. 3.7 provides a schematic diagram of an effective early warning pro-
gression. We emphasize here that drought early warning may be consid-
ered as a series of increasingly strident alerts. Unlike floods, which
happen rapidly, most droughts arise slowly, and typically under large-scale

Figure 3.6 2011�18 FEWS NET/East African Food and Nutrition Working Group Food
Insecure Population estimates. FEWS NET, Famine Early Warning Systems Network.
Courtesy: Gideon Galu, FEWS NET/Climate Hazards Group.
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circulation patterns conducive to long stretches of dry weather. After
more than 30 years of refinement, the FEWS NET monitoring system
progresses fairly across these timescales of drought progression: from pre-
diction (i.e., “ocean temperatures appear conducive to drought in this
food-insecure region”) to monitoring (looks like a drought is really hap-
pening) to detailed assessment (the harvest failed, and millions of people
are likely to be in IPC crisis stage or worse).

As an example, we have used the country of Ethiopia, and we refer-
ence the El Niño�related 2015 drought event, which pushed more than
10 million people into severe food insecurity. In the left column, we list
potential information sources applicable at each stage of the progression.
In the central column, we list specifics pertinent to Ethiopia. On the
right, we denote increasing levels of concern. As we progress through the
season, our certainty and spatial specificity increase. Before the season
begins, we know that Ethiopia is very food insecure, has a rapidly grow-
ing population, and has experienced an increased frequency of drought in
the eastern parts of the country. In May of 2015 we see NINO3.4 SST
anomalies rise above 11°C. We know that prior research has identified
robust negative teleconnections associated with El Niños, and that the
February�May Belg season has been poor in many places. Advancing a
month, we might use land surface models, like those in the FEWS NET

Figure 3.7 Stages of a canonical drought monitoring progression. Courtesy: Chris
Funk.
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Land Data Assimilation System (FLDAS), in conjunction with satellite
precipitation fields such as the Climate Prediction Center’s African
Rainfall Climatology version 2 (ARC2) (Novella and Thiaw, 2013) or
the CHIRPS, to examine soil moisture anomalies. Such maps would have
identified some exceptionally dry conditions. Because soil moisture condi-
tions tend to have a lot of persistence, these midseason maps are essentially
predictive. Crop Water Requirement Satisfaction Index (WRSI) models
provide a similar midseason snapshot of water availability. While still an
active area of research, FEWS NET is working toward a capacity to com-
bine midseason remote sensing data with forecast-based outlooks derived
from weather and climate models.

It is important to note that FEWS NET depends heavily on a
convergence-of-evidence approach. All sources of information are uncer-
tain. Translating satellite-observed radiance information into accurate
assessments of climatic shocks is difficult. FEWS NET, therefore, looks at
multiple types and sources of remotely sensed information such as precipi-
tation estimates, Normalized Difference Vegetation Index imagery17 and
satellite estimates of actual evapotranspiration (Senay et al., 2011, 2013,
2007). In addition to satellite information, on-the-ground reporting and
station observations provide critical input to midseason assessments.

Finally, as the season draws to a close, FEWS NET early warning
scientists work to refine their assessments. How bad might bad be? The
Worst drought in 10, 20, 50 years? Can we use WRSI models or statisti-
cal relationships to quantify the likely crop production loss? Can we use
FLDAS runoff to quantify per- capita water supplies? At the close of the
growing season, high-resolution vegetation imagery provides an excellent
source of spatially detailed information related to crop production and
pasture conditions. Working effectively in concert, early warning products
provided at each successive time period can provide increasingly accurate,
specific, and actionable information.
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CHAPTER 4

Tools of the trade 1—weather
and climate forecasts

4.1 Examples of operational drought forecasting systems

At present, there are several operational drought forecasting systems that
use weather and climate forecasts to provide drought forecasts. These sys-
tems focus on different types of droughts, such as meteorological drought
(based on precipitation forecasts or evaporative demand forecasts), agricul-
tural drought (based on soil moisture or crop yield forecasts), or hydrologi-
cal drought (based on runoff, streamflow, total water storage, or reservoir
storage forecasts). These systems also differ in the ways that the weather
and climate forecasts are used or integrated to provide drought forecasts.
Nonetheless, weather and climate forecasts are a primary source for drought
forecasting in all of these systems. Some of the main operational drought
forecasting systems and a summary of their approaches are discussed next.

4.1.1 U.S. Climate Prediction Center’s monthly and seasonal
drought outlook
The U.S. National Oceanic and Atmospheric Administration’s (NOAA’s)
Climate Prediction Center (CPC) provides monthly (Fig. 4.1A) and sea-
sonal (Fig. 4.1B) drought outlook maps, operationally, every month.

Figure 4.1 CPC’s U.S. (A) monthly and (B) seasonal drought outlook maps. The maps
provide an assessment of the drought conditions, mainly drought development, per-
sistence, improvement, and recovery. The maps were accessed on April 16, 2020.
CPC, Climate Prediction Center.
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Those maps depict an assessment of the drought conditions, including
drought development, progression, and recovery, based on the current
drought conditions, as shown by the U.S. Drought Monitor (USDM) and
weather and climate forecasts. The assessment provided is generally based
on subjective (expert opinion) probability of trend in drought conditions,
guided by weather and climate forecasts provided by the CPC, as well as
dynamical forecasts. Like the USDM, these outlooks also benefit from the
expert judgment of the drought outlook authors.

4.1.2 Famine Early Warning Systems Network food insecurity
outlook
Famine Early Warning Systems Network (FEWS NET) provides assess-
ments of food insecurity conditions (i.e., food insecurity outlooks)
in some of the most vulnerable regions in the world (in about 351
countries) to support international relief agencies in mitigating the worst
impacts of food insecurity (Fig. 4.2). These outlooks are released every
month. FEWS NET maps include outlooks of food insecurity conditions
in the near-term (about 1�3 months in the future) and the medium-term
(about 3�6 months in the future). These maps are based on several food
security�related assumptions for the current time period (at the time of
release of the outlooks) and for the near- and medium-term future. The
future projections consider near-term and medium-term climate forecasts.
The team considers forecasts of climate mode variations, such as the El
Niño and Southern Oscillation (ENSO) and the Indian Ocean Dipole
(IOD), since these modes influence rainfall and temperature in FEWS
NET’s focus regions. The outlooks also consider dynamical forecasts of
rainfall, temperature, and soil moisture. For example, if a region, such as
the Greater Horn of Africa, which is typically vulnerable to food insecu-
rity, is also expected to receive below-normal rainfall, food insecurity
conditions may be expected to develop or worsen there. The severity of
food insecurity may depend on several other dimensions of risk, such as
the livelihoods of the affected population, governance, and conflict situa-
tions. More details on the process of generating food insecurity outlooks
can be found in Funk et al. (2019).

4.1.3 Miscellaneous application of weather and climate
forecasts for drought forecasting
In addition to these previously mentioned drought early warning systems
and several others, weather and climate forecasts are used to produce
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maps of drought early indicator products. For example, CPC provides
Standardized Precipitation Index forecasts based on the seasonal precipita-
tion forecasts, and Standardized Runoff Index forecasts based on the
runoff forecasts generated by forcing hydrologic models with the seasonal
climate forecasts. The NASA Hydrological Forecasting and Analysis
System provides forecasts of soil moisture percentile (typically considered
to be an indicator of agricultural drought) for Africa and the Middle

Figure 4.2 FEWS NET’s (A) Near-Term and (B) Medium-Term Acute Food Insecurity
outlook maps. Maps show the outlook for August�September 2019 and October
2019 to January 2020. FEWS NET, Famine Early Warning Systems Network.

63Tools of the trade 1—weather and climate forecasts



East region. The NOAA’s NCEI (https://www.ncdc.noaa.gov/temp-and-
precip/drought/recovery/) provides forecasts of several drought indicators
based on seasonal climate forecasts (Fig. 4.3).

Figure 4.3 NOAA’s National Centers for Environmental Information provided drought
projections for the upcoming 3�12 months, based on seasonal climate forecasts.
(A) PHDI forecasts for the next 2 months, assuming normal climate conditions and
(B) EDDI conditions over the next 6 months, based on seasonal climate forecasts
from the CFS’s version 2 model. CFS, Climate Forecast System; EDDI, Evaporative
Demand Drought Index; NOAA, National Oceanic and Atmospheric Administration;
PHDI, Palmer Hydrologic Drought Index.
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Due to the critical importance of weather and climate forecasts in
both drought early warning and the mitigation of the adverse impacts
of drought, this chapter provides a summary of fundamental details of
weather and climate forecasts. The goal of this chapter is to provide a
basic understanding of the process of generating weather and climate fore-
casts and a scientific basis for their generation. The rest of this chapter will
elaborate on the (1) methods and scientific basis for generating weather
and climate forecasts, (2) sources of weather and climate forecasts skill,
and (3) operational weather and climate forecasting.

4.2 Methods of weather and climate forecasts

4.2.1 Climatological forecasts
The term “climatology” is often used to refer to the long-term average
weather conditions in a certain place at a certain time of the year.
Climatological forecasts, therefore, are simply maps of past observed cli-
mate conditions for a given region and time. Climatological forecasts
are one of the simplest yet most useful (not to be confused with skillful)
ways for providing forecasts. The assumption in using climatological fore-
casts is that the weather/climate during a given region and season could
be similar to one or more of the weather/climate conditions during the
past years at the same forecast time period and location. Climatological
forecasts, although not skillful, can still be useful, as they indicate the
year-to-year variability in the weather/climate conditions in a given
region and time of the year. Such forecasts can be very useful, for exam-
ple, in understanding when the chance of recovery for a given season
becomes very high. Billions of humans live in monsoonal regions, for
example, and the following narrative is very common. “When consider-
ing the drought outlook for region X, we note that the average precipita-
tion for the next six months is very low; given this fact and the large
observed rainfall deficits, we therefore conclude that the chance of
extreme water stress is very high.”

Typically, regions with more variable (i.e., noisy) interannual climatic
conditions will have a greater need for skillful forecasts. For practical
applications, climatological forecasts can also be useful in communicating
the forecast uncertainty to decision-makers and can be combined with
recent observations to provide skillful forecasts (depending on the time of
the season) of the climate and hydrologic impacts. For example, during
the middle of a rainy season, when precipitation observations since the
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start of the rainy season through the middle of the season are available, they
can be combined with the climatological forecasts for the middle of the sea-
son through the end of the season to provide an outlook of how the precip-
itation over the entire season may look. In this case the skill in the
observation-climatological forecasts will come from the observations through
the middle of the season. If the rainy season, from the start to the middle of
the season, has been poor, there will be a higher chance of an overall poor
rainy season than if the season started out well. Another important practical
application of climatological forecasts is that they serve as a benchmark for
calculating the skill of more sophisticated weather/climate forecasts (i.e.,
forecasts generated using global climate models and/or statistical models
informed by the initial state of the climate). Typically, the more sophisti-
cated forecasts will beat climatological forecasts in terms of usefulness for
decision-making applications. Chapter 10, Practice—Evaluating Forecast
Skill, describes some techniques for evaluating forecast skill.

4.2.2 Persistence-based forecasts
Like climatological forecasts, persistence forecasts also typically serve as a
benchmark for evaluating the value of sophisticated forecasts. The main
difference between both types of forecasts is that persistence-based fore-
casts rely on observations during the recent past rather than observations
from several past years. Here, the assumption is that the forecasts during
the upcoming time period may be similar to what has happened in the
recent past. Using the analogy of the example presented previously, the
assumption would be that if a season has been rainy from the start of
the season to the middle of the season, it may be rainy during the rest of
the season as well. The skill of persistence forecasts varies based on the
forecast lead-time. For example, persistence forecasts are typically most
skillful for the next day’s weather. In other words, assuming that today’s
weather will be the same as yesterday’s is often adequate. In general, per-
sistence forecasts are implemented as autoregressive statistical models. In a
typical autoregressive model, it is assumed that the values over the next
time steps depend linearly on the values in the current time step, as well
as a stochastic component (inherently unpredictable component).

4.2.3 Analog forecasts
Like climatology and persistence-based forecasts, analog forecasts are also
informed by past observations. However, in the case of analog forecasts,
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past observations are screened based on their similarities with the current
conditions and/or expected future conditions. For example, during an El
Niño year, it would be fair to assume that future climate conditions
can be similar to the climate conditions during the past El Niño years.
Here, El Niño conditions are used as a criterion to screen best matches—
analogs—from the past observations. The analog forecasts can be most
useful when a sufficiently large sample of past observations exists, which
essentially increases the chances of finding a best match for the current
or expected weather/climate conditions. Methods also exist to calculate
weighted average of past analogs where weights are assigned based on the
similarity of each of the analogs with the current or expected conditions.

4.2.4 Statistical forecasts
Here, we refer to statistical weather and climate forecasts that utilize a sta-
tistical method to represent the generally linear (and in some cases nonlin-
ear) relationship between the predictand and predictors. Predictors in this
case are generally current, or recent-past observations, which either statis-
tically (e.g., estimated using correlation) or dynamically (e.g., proved by
theory and/or model-based experiments) are known to have some bearing
on the future weather/climate conditions. Statistical forecasts generally
rely on the assumption that past relationships between the predictand and
predictors will remain intact in the future. Statistical forecasts generally
rely on the signal (i.e., the strength of the linear relationship) derived
from the predictors and stochastic component to represent the noise in
the relationship. Use of statistical forecasts is prevalent because they are
numerically less expensive than numerical weather predictions and can still
provide a useful level of skill for decision-making applications. They can
also be explained with relative ease that makes them an attractive tool for
the decision-makers. Chapter 9, Sources of Drought Early Warning Skill,
Staged Prediction Systems, and an Example for Somalia, provides some
examples of statistical forecast models.

4.2.5 Dynamical forecasting
Dynamical forecasts (also often known as numerical weather prediction or
NWP) are the most sophisticated, and presumably, the most realistic repre-
sentation of the climatic phenomenon. The history of NWP is a long one.
The theoretical basis for “long-range” (i.e., several days in the future) NWP
was put forth by Abbe (1901). His seminal paper posed the long-range
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weather forecasting as an initial value problem and proposed that future
weather could be predicted using physical laws (i.e., the governing partial
differential equations) starting from the initial state of climate (i.e., observed
current state of climate). Dr. Edward Lorenz’s work highlighted the
inherent unpredictability or “chaos” in the climate system, which led to the
realization of the limits of predictability, as well as the importance of
improving estimates of initial conditions. Major progress has been made to
improve initial conditions via satellite data sets and/or by data assimilation.
Dr. Lorenz’s work showed that a relatively small uncertainty (or error)
existed in the estimates of initial conditions that lead to higher level of
uncertainty as time passed. In other words, higher lead forecasts will have a
higher level of uncertainty due to uncertainty in the initial state.

Since the early 20th century, major advances have been made in
weather and climate forecasting by improvements in (1) monitoring the
current state of climate, thus leading to improved knowledge of the initial
state and (2) computing resources leading to higher resolution and faster
calculation of the governing differential equations. Overall, these advances
have led to the development of several operational weather- and climate-
forecasting systems, and substantial improvements in weather and climate
forecast skill. For example, in general, 3�10 days ahead weather forecast
skill has been increasing by about 1 day per decade (Bauer et al., 2015).

4.3 Sources of weather and climate forecast skill

There are several sources of weather and climate forecast skill. Their rela-
tive importance in terms of the contribution to the skill changes with
forecast, time, and space. The sources of skills that are most important
for short-range weather forecasts are different than the most important
sources for long-range and subseasonal to seasonal scale forecasts. This is
mainly due to the fact that different sources of skill have different levels
of persistence and periods of oscillation. For example, sea ice forcings
have larger persistence than ocean surface temperature conditions, which
have longer persistence than soil moisture, all of which influence future
weather and climate conditions.

The first-type sources are climate and weather modes of variability,
such as ENSO, Madden-Julian Oscillations, and IOD, which have a certain
recurring and/or quasioscillatory frequency. Their respective phases (such as
negative and positive phases) repeat after a certain quasiperiodic interval.
These are commonly referred to as “modes” of variability. Their period of
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oscillations can range from 2 weeks to several years (typically 3�5 years).
Their teleconnection to the weather and climate of regions across the
globe, and at different time ranges (or lead-times), is an important source of
the weather and climate forecast skill. Major attempts have been made to
understand (1) how these modes of variability evolve and (2) what their
overarching influences on weather and climate are. These modes are used
in both a dynamical and statistical manner to provide forecasts of weather
and climate. For example, ENSO, which is one of the most widely known
and influential modes of variability, can affect precipitation and temperature
across the globe.

The second-type information sources are the anomalies in the compo-
nents of the Earth system whose persistence lasts for a similar time range
as the target forecast period. For example, soil moisture anomalies can
persist up to a few weeks and hence influence weather and climate during
that period through the land-atmospheric feedback process. Similarly,
anomalies in the ocean surface temperature can last for months and hence
influence the climate over several months.

The third-type sources are the “external” radiative forcings that can be
generated over different time periods and influence climate over weeks to
months, or longer. Examples of these forcings include aerosols from vol-
canoes, carbon emissions, and cyclic and anomalous solar output. These
atmospheric aerosols and greenhouse gasses modify clouds, precipitation,
and the atmosphere’s ability to trap and retain radiation. Typically, these
sources of weather/climate forecast skill, along with slowly varying sea ice
and ocean temperatures, are accounted for in forecasting systems either as
“boundary values,” “initial values,” or a combination of both.

4.4 Summary

Weather and climate forecasts are crucially important for an effective
drought early warning system. Therefore this chapter first provides exam-
ples of how they are used for drought forecasting (NOAA CPC’s Seasonal
Drought Outlook) and for food insecurity early warning (U.S. Agency for
International Development’s FEWS NET). This chapter then provides a
summary of different methods to provide the forecasts, which are gener-
ally classified into two categories: statistical and dynamical methods.
Finally, this chapter provides a brief description of the sources of the skill
in forecasts, which form a basis for their generation and application for
providing drought forecasts and usage in drought decision-making.
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CHAPTER 5

Tools of the trade 2—land
surface models

5.1 Introduction

Drought monitoring benefits from estimates of current conditions (includ-
ing estimates of precipitation totals, soil moisture, and streamflow) and a
long-term record of these estimates to compare with current conditions.
Ideally, drought monitoring would be facilitated by spatially well-
distributed in situ and long-term observations of different water cycle
components, but these observations often do not exist in developing
countries and remote locations. In general, the records of precipitation
and temperature are more prevalent than the records of water cycle com-
ponents such as soil moisture and streamflow. Due to this general lack of
hydrologic observations, researchers and engineers have utilized physical
and/or empirical mathematical equations to predict (or estimate) stream-
flow from available observations of precipitation and temperature.
Adequate representation of land surface processes is necessary and, in turn,
the water and energy budget provided by land surface models (LSMs)
helps to drive models of the global climate. This need has led to the field
of land surface modeling.

The evolution of modern-day LSMs can be attributed to the need for
accurately representing energy, water balance, and land-atmosphere inter-
actions in the general circulation models (GCMs). During the advent of
the GCMs, land surface would be represented by a simple leaky bucket
model. This approach did not account for variability in infiltration rate
due to topography and soil parameters, or the effect of vegetation resis-
tance on evapotranspiration. Several studies identified issues with this
approach, which led to the advent of more complex LSMs. Although
they were initially proposed as a land surface scheme of the GCMs, the
LSMs, as independent models, started to be used to run offline (i.e., when
an LSM is not coupled with a GCM and is forced by prescribed atmo-
spheric forcings) to simulate water balance components. It was this initial
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independent use of the LSMs that led to their applications in hydrologic
and drought monitoring and forecasting. Next, we provide a brief over-
view of the LSMs, a history of their usage in drought monitoring, and
examples of experimental or operational drought monitors that are based
on LSMs. Finally, we discuss the limitations of the LSMs and identify the
issues with regard to their usage in drought monitoring.

5.2 An overview of land surface models

The recognition of the importance of the land surface in partitioning the
energy balance—and as a carbon sink that is crucial for climate as a
whole—led to the development of modern-day LSMs. Fig. 5.1 provides a
schematic of global energy balance, which essentially accounts for the
incoming and outgoing radiation and atmospheric and terrestrial fluxes.
The land surface mainly plays a role in this energy balance by partitioning
the net energy into sensible and latent heat fluxes. The net energy is the
sum of all the upward and downward radiation entering and leaving the
land surface. Partitioning of the available net energy into sensible and
latent heat fluxes is dependent on the available moisture in the land

Figure 5.1 Schematic representation of global energy balance.
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surface and vegetation type. An adequate estimation of the partitioning of
energy is conducted by the LSMs.

At present, globally, there are several widely used macroscale LSMs
that are currently used for drought monitoring purposes. This section will
provide a brief overview of the typical LSM schemes. The LSMs use
mathematical equations, along with physical or empirical parameters, to
calculate water and energy budget at the interface of land and atmosphere.
A typical LSM scheme comprises vegetation, soil, and snow, as well as a
representation of the land surface’s interaction with the rest of the climate
to account for water and energy. Different LSM schemes often vary in
how they represent those components. For example, the representation of
soil profiles is often done differently, depending on the LSMs. Typically,
the LSMs have three or four layers of soil with varying depths; however,
there are some models with one layer of soil. The depth of the soil layers
is often prescribed and/or calibrated to match certain observed hydrologic
variables (e.g., streamflow). Vegetation is represented with different com-
plexities as well. Models such as variable infiltration capacity (VIC) allow
for different vegetation classes to exist within the same grid cell. The frac-
tion of the vegetation cover in a grid cell occupied by a given vegetation
class is often determined using satellite-based observations of vegetation
over an extended period of time. Rooting depth is often prescribed as
well. The models also often assume a static seasonal cycle of vegetation,
meaning that they simulate the growth cycle of vegetation types during a
given year, but that cycle does not change from one year to the next.
The variables, such as leaf area index at any given time of the year, remain
the same each year.

Snow representation among LSMs also varies. There are now a few
LSMs that have multiple layers of snow. Typically, the input precipita-
tion (direct rainfall or snowmelt) is first used to satisfy deficit in soil
moisture, and excess water is simulated as runoff. The moisture in the
soil is withdrawn through evaporation (bare land) and transpiration via
the canopy (in vegetative land), or percolation to the deeper layer of
substorage.

Fig. 5.2 provides a schematic of the water and energy balance, as simu-
lated by a given grid cell of the VIC model (Liang et al., 1994).
Precipitation (P) accounts for input water in a given grid cell, and E
(evaporation), Et (evapotranspiration), Ec (canopy evaporation), R (runoff),
and B (baseflow) are outputs of moisture from the given grid cell.
Available net energy and amount of moisture in the soil influence the
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amount of evaporation output, and the amount of moisture and rainfall
intensity influence runoff and baseflow out of the grid cell. A VIC model
does not allow for lateral movement of water from one grid cell to
another; however, external models (typically known as routing models)
can take the surface and subsurface runoff from the grid cells and simulate
its flow through a given basin, based on the basin digital elevation model,
surface roughness, etc.

5.3 Operational land surface models�based drought
monitors

This section provides an overview of currently operational national- or
continental-scale drought monitors that are based on LSMs.

Figure 5.2 A schematic of the water and energy balance, as simulated by a given
grid cell of the VIC model (Liang et al., 1994). VIC, Variable infiltration capacity.
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5.3.1 National Center for Environmental Prediction’s North
American Land Data Assimilation System (NLDAS) drought
monitor
National Oceanic and Atmospheric Administration’s (NOAA’s) National
Center for Environmental Prediction (NCEP)’s North American Land
Data Assimilation System (NLDAS) hydrologic modeling system (Mitchell
et al., 2004) is one of the first operational multiple LSM-based drought
monitoring systems.1 Each day, four of the LSMs (VIC, NOAH,
MOSAIC, and SAC) are run using the same atmospheric forcing data
through the past day to generate simulations of soil moisture and runoff
(among other water and energy balance variables) for the past day.
Current soil moisture and runoff data are used for monitoring drought by
comparing them with a long-term (as far back as 1979) historical distribu-
tion of those variables for each grid cell. By comparing these data with
the historical distributions, current values are converted into percentiles,
which indicate the severity of the current drought conditions. Total soil
moisture (a sum of the soil moisture of all layers, which are different for
each model) and top-one-meter soil moisture are used to provide esti-
mates of current drought severity. Top-one-meter soil moisture is pre-
sumably used for agricultural drought monitoring, and total soil moisture
is most appropriate for hydrological drought monitoring, as it takes into
account the moisture in the deeper layer. This contributes to baseflow
and changes relatively slower than the top layers. Fig. 5.3 depicts total soil
moisture percentile, as of April 7, 2018, over the Continental United
States (CONUS). The areas in drought are marked by below 30 percen-
tile of soil moisture. The regions with the least soil moisture percentile are
estimated to be in the most severe drought compared to their respective
climates (in this case spanning from 1979 to present). The LSM-based
drought monitors [such as NLDAS drought monitors and monitors such
as Climate Prediction Center’s (CPC’s) Land Surface Monitoring and
Prediction System2 and Surface Water Monitor3] have been crucial in
improving drought monitoring in the CONUS. These products are one
of the data sets that are used by the U.S. Drought Monitor.4

1 http://www.emc.ncep.noaa.gov/mmb/nldas/drought/
2 http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.
shtml

3 http://www.hydro.washington.edu/forecast/monitor/index.shtml
4 http://droughtmonitor.unl.edu
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5.3.2 Africa Flood and Drought monitor
Princeton University—in collaboration with UNESCO, AGHRYMET
(Niger), and ICPAC (Kenya)—has produced the African Flood and Drought
Monitor (AFDM).5 AFDM is another land surface�based hydrologic moni-
toring system that provides estimates of flood and drought conditions in
Africa (Sheffield et al., 2014). This monitoring system, too, is grid-based and
uses gridded atmospheric forcing data derived from satellite, reanalysis, and in
situ observations (Sheffield et al., 2006). It is based on the VIC LSM. The
VIC LSM is forced with gridded atmospheric forcings and runs in real-time
(with a lag of 3 days or so) to provide simulations of soil moisture, runoff,
and evapotranspiration for all of Africa. These gridded, simulated values of
hydrologic variables are then converted into percentiles based on the histori-
cal distributions, or historical simulations, of the respective variables. This
approach of providing drought and flood severity estimates based on

Figure 5.3 Example of NLDAS drought monitor.

5 http://stream.princeton.edu/AWCM/WEBPAGE/interface.php
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percentiles of simulated hydrologic outputs is similar to the approach used by
the NLDAS. This system also provides a precipitation- and vegetation indi-
ces�based drought indicator, which can be used in conjunction with the
simulated outputs for flood and drought monitoring.

One of the primary differences between the AFDM and NLDAS’s
drought monitor (besides the change in domain and atmospheric forcings
data sets) is that the AFDM system is based on one LSM only, whereas
the NLDAS drought monitor is based on multiple LSMs. Incorporating
multiple LSMs provides a better estimate of uncertainties in drought mon-
itoring (Wang et al., 2009). Different LSMs have different assumptions
regarding their land surface schemes, along with their parameters.
Therefore using multiple models provides a range of outputs for drought
monitoring that takes model-related uncertainties into account (Fig. 5.4).

5.3.3 Global soil moisture monitoring
Thus far, there have been several attempts to provide hydrologic monitor-
ing at a global scale. Some of those attempts have been limited to
researching and exploring the potential of global-scale hydrologic moni-
toring using LSMs. One such attempt is described in Nijssen et al. (2014).
This study developed a prototype global-scale drought monitoring tech-
nique using three LSMs: VIC, NOAH, and Sacramento. The historical
simulations (used for historical distribution of hydrologic variables) were
generated using Princeton’s atmospheric forcing data set (Sheffield et al.,

Figure 5.4 Total soil moisture percentile over Africa as of April 8, 2018, as displayed
by the Princeton and partner institutes’ AFDM. AFDM, Africa Flood and Drought
Monitor.

77Tools of the trade 2—land surface models



2006). Each of the LSMs was run with the same forcings. For the real-
time simulations the study used a combination of bias-corrected (with
respect to Princeton’s atmospheric forcings) satellite precipitation National
Aeronautics and Space Agency (NASA)’s TRMM (Huffman et al., 2006)
and NCEP’s Global Ensemble Forecasts System temperature analysis fields
(Hamill et al., 2013). The study evaluated the performance of this system
for monitoring major-known drought across the world and concluded
that this system would be able to identify major drought events across the
globe. The study also highlighted the challenge of using satellite data sets
and the temporal inconsistency of forcings data set, which can lead to
biased estimates of the current hydrologic conditions.

One of the operational global soil monitoring systems is operated by
NOAA’s CPC6 (van den Dool, 2004). This system is based on the CPC’s
soil moisture model. This monitoring system provides the estimate of soil
moisture percentile globally at about 2-month lag time. Along with percen-
tile of soil moisture, it also provides anomaly and simulated value of soil
moisture for the recent past (2 months ago), and for all months in the last
year (Fig. 5.5).

Figure 5.5 Total monthly soil moisture percentile over the globe as of February
2018, as displayed by the NOAA’s CPC’s Soil Moisture Monitoring system. CPC’s,
Climate Prediction Center’s.

6 http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/gl_Soil-Moisture-
Monthly.php
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5.3.4 The Famine Early Warning Systems Network land data
assimilation system
The Famine Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS)7 is another quasiglobal (50S�50N drought
monitoring system. Recently extended to a global domain, the FLDAS sup-
ports the FEWS NET Food Security Outlook process. A custom instance of
the NASA Land Information System (LIS) (Kumar et al., 2006) has been
modified to work with the models and data commonly used by FEWS
NET. The LIS contains the Noah (Ek et al., 2003) and VIC models (Liang
et al., 1994). Comparisons of FLDAS outputs with independent verification
data (satellite vegetation and soil moisture, observed streamflow) indicate
good performance (McNally et al., 2016, 2017), and (Jung et al., 2017), and
FLDAS outputs can be related to agricultural models to provide ag-impact
models (Agutu et al., 2017; McNally et al., 2015) (Fig. 5.6).

5.4 Limitations of drought monitoring using land surface
models

As indicated in this chapter, LSMs have become valuable tools for providing
hydrologic and drought monitoring at national, continental, and global scales.
The primary virtue of LSMs is that they provide estimates of hydrologic vari-
ables (such as soil moisture, runoff, and evapotranspiration) which, at a regional
or global scales are rarely observed but are still very useful for estimating

Figure 5.6 Monthly soil moisture anomaly over the globe as of December 2019, as
displayed by the FLDAS. FLDAS, FEWS NET Land Data Assimilation System.

7 https://ldas.gsfc.nasa.gov/fldas
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drought severity and, hence, for drought management and the mitigation of
socioeconomic losses due to drought. Nevertheless, this approach does have
important limitations, as well as room for further improvement. The main lim-
itations of this approach are as follows:
• The lack of high-quality in situ observations of atmospheric forcings,

especially over developing and remote locations (e.g., high-elevation
locations).

• The use of deterministic atmospheric forcings, potentially resulting in
biased estimates of hydrologic variables.

• The lack of hydrologic observations to calibrate LSMs, mainly in
developing regions.

• The use of deterministic parameters by the LSMs.
• A lack of representation of dynamical changes in vegetation.
• A lack of integration with models that simulate nonprecipitation water

inputs such as reservoir models, groundwater models, and irrigation
schemes.

• Basic uncertainties surrounding soil attributes, water holding capacity,
and root depth.

5.5 Summary

The LSMs have been valuable tools in monitoring drought at national,
continental, and global scales. This chapter provides an overview of the use
of LSMs in hydrologic and drought monitoring. This chapter first provides
a brief history of LSMs, and an overview of typical LSMs in terms of model
physics and parameterization. Following which, this chapter provides an
overview of three LSM-based hydrologic/drought monitoring systems that
are currently in operation. Those systems include U.S.-focused NLDAS
drought monitoring system, Africa-focused AFDM, and the CPC’s global
soil moisture monitoring system, and the NASA and FEWS NET’s
FLDAS. Finally, this chapter provides a quick overview of important limita-
tions that currently exist based on the approach of using LSMs for hydro-
logic and drought monitoring.
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CHAPTER 6

Tools of the trade 3—mapping
exposure and vulnerability

6.1 Exposure and vulnerability

This chapter builds on two excellent sources of international guidance on
drought management and disaster risk reduction (DRR) resources provided
by the Integrated Drought Management Program (IDMP, droughtmanage-
ment.info) and the United Nations Office for DRR (UN DRR) (unisdr.
org/). Our overarching goal is to describe, in general terms, how drought
monitoring and prediction systems fit within social environments that reduce
and respond to the impacts associated with droughts. This fit is an essential
aspect of providing actionable information. While a detailed discussion of
drought management and DRR is beyond the scope of this book, drought
early warning systems (DEWS) clearly play a critical role in drought man-
agement and DRR. Understanding the basic principles of drought manage-
ment and DRR can help one to inform more effective DEWS.

For guidance on drought management, readers should consult the
resources provided by the IDMP (http://www.droughtmanagement.info).
Wilhite (2012) is a seminal figure in this field, and his edited volume of
articles is a valuable collection. The more recent Drought: Science and Policy
(Iglesias et al., 2019) provides coverage of drought hazards as well as vul-
nerability, risk and policy, and drought-management experiences.

Each year, water insecurity costs the global economy more than 500 bil-
lion U.S. dollars.1 To improve responses to this water insecurity, the World
Meteorological Organization and the Global Water Partnership launched
the IDMP to address drought issues more effectively. IDMP provides advice
and guidelines to communities, countries, and regions affected by drought.
The IDMP website provides valuable resources for those interested in learn-
ing more about systematic drought management.

One core concept promoted by the IDMP centers on the three pillars
of drought management: monitoring and early warning; vulnerability and

1 https://www.gwp.org/en/learn/KNOWLEDGE_RESOURCES/Global_Resources/
securing-water-sustaining-growth/
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impact assessment; and mitigation, preparedness, and response. These
three pillars provide the building blocks of a successful drought policy.
DEWS provide the foundation for effective, proactive drought policies.
Vulnerability and impact assessments determine the primary impacts asso-
ciated with droughts and their root causes. The UN DRR definition of
vulnerability is the conditions determined by physical, social, economic and envi-
ronmental factors or processes which increase the susceptibility of an individual, a
community, assets or systems to the impacts of hazards.

According to the IDMP, the third pillar of drought management is
drought mitigation, preparedness, and response. These measures and actions
seek to reduce drought risk by reducing drought impacts and drought vul-
nerability through risk reduction and the identification of appropriate trig-
gers to phase in and phase out mitigation actions. Mitigation actions
minimize the impacts of hazardous events. Such actions are usually short-
term responses that can arise during the onset or termination of a drought.

Short-term drought mitigation can be contrasted with longer term
efforts to build coping capacity. Drought-coping capacity includes the com-
bined attributes and resources within a society or community to manage
and reduce drought risk and subsequently increase resilience. Resilience is
the ability of a society or community to resist, absorb, and recover from the
effects of a hazard in a timely manner. Coping capacity development is the
process by which societies and communities systematically increase their
abilities over time to achieve social and economic goals while decreasing
vulnerability and increasing resilience. Drought-coping capacity develop-
ment includes training, as well as continuous efforts to develop institutions,
effective governance frameworks, and improved DEWS.

This chapter will focus on a deeper understanding of vulnerability and
exposure, because these factors are most intimately linked to the develop-
ment of effective DEWS. Ultimately, DEWS focus on the early identifi-
cation of drought risks. This identification can then trigger mitigation or
response actions. Risks occur within a multidimensional risk framework
(risk5 shock3 vulnerability3 exposure), so when assessing drought risks,
we have to take vulnerability and exposure into account (Fig. 6.1).

Given the specific nature of drought, it is useful to expand this definition,
replacing “shock” with “substantial water deficit.” In practice, these water
deficits will almost always have to do with the environmental, economic,
agronomic, and societal setting, which will influence the level of exposure
and vulnerability. These factors will also vary according to the various sec-
toral aspects of the droughts being considered, that is, agricultural droughts
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may be different than rangeland/ranching/pastoral droughts, which may be
different than regional water supply/hydropower droughts.

Exposure is a measure of who or what might be in harm’s way. It is often
tightly related to human population and economic activity. Measures of expo-
sure can include the number of people or types of assets in an area. A rainfall
deficit in an unpopulated region of a tropical rainforest or dry desert might
not expose a large number of farmers to agricultural drought risk. On the
other hand, there might be substantial herds of cattle, goats, or sheep in rela-
tively unpopulated regions. Interactive tools that allow for the examination of
environmental drivers such as precipitation deficits alongside exposure-related
variables such as population can facilitate the identification of high-risk areas.

While there can be many types of exposure—and a complete list is
beyond the scope of this book—agricultural and pastoral-ranching expo-
sures are relatively straightforward. Exposure for these categories will be
related to the location, quantity, and value of crops or livestock. The
losses associated with poor harvests may be both direct and indirect.
Direct impacts will relate to the immediate loss associated with reduced
crop production. These can manifest as reductions in available food, for

Figure 6.1 Components of risk: risk5 shock3 exposure3 vulnerability.

85Tools of the trade 3—mapping exposure and vulnerability



households dependent on local crop production, as well as reductions in
farm-incomes. Secondary losses can also arise and may relate to increases
in regional food prices. Many farming households both produce and con-
sume food. Secondary losses can often arrive with a greater time lag and
can include degradation of farm quality, drought-coping capacity, and
resilience. Secondary drought impacts can extend beyond the farming
household, reducing demand for regional farm labor, and reducing eco-
nomic activity in related businesses.

Pastoral and ranching exposure is related to quantity and value of
herds of animals. Reduced forage and water availability, combined some-
times with the direct effects of high temperatures, can reduce the health
and weight of herd animals, decreasing their value. Ranchers and pastoral-
ists may frequently need to purchase fodder, and sometimes even purchase
water, in order to overcome the effects of drought on rangeland biomass
and land surface runoff and water storage. In some regions such as sub-
Saharan Africa or Mongolia, itinerant or semiitinerant pastoral communi-
ties constitute some of the most food insecure populations in the world.
In addition to economic losses, these populations may also rely on herd
animals as a direct source of calories from milk and meat.

Among poor food insecure pastoral and agricultural populations, the
relative magnitude of exposure may be greater for pastoral communities,
especially when losses are evaluated over a longer time span. In many
cases, but not all, agricultural droughts impact a single, specific growing
season. The farm household might experience catastrophic losses, but
these have a limit—such as the entire potential harvest. The stakes for pas-
toral households may be greater. For most pastoral households, and many
ranchers, herds represent very large accumulations of wealth. Often, these
herds simultaneously act as economic reserves and as a source of income,
and households try to increase the size of these herds over time. When
droughts destroy these herds, years of economic investment can be lost in
a matter of months. Years of better and wetter conditions will typically be
required to recover from these losses.

Water supply for irrigated agriculture and consumption by industry,
homes, and hydropower represent a third major and complex category of
drought risk exposure. These potential impacts can be both direct and
indirect and may involve water shortages a long way from the origin of a
drought, as rivers connect water consumers with distant drought-stricken
watersheds. One important aspect of these impacts can involve the
expenses associated with the movement of water. Water is heavy, and the
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costs associated with pumping and transporting water from a water surplus
to a water deficit region can be very high. For many countries, hydro-
power is a major source of energy and income. Droughts in these coun-
tries can have substantial direct impacts associated with reduced power
production, and secondary impacts associated with increased energy costs
and/or limitations in the amount of energy available to support businesses
and other societal activities.

In general, it is important to recognize that increases in population and
economic activity tend to cause exposure to increase over time. This can
increase drought risk without the actual frequency of droughts increasing.
This can make it very hard to untangle the explicit contribution of low-
frequency hydrologic changes, which may be associated with climate
change. Fig. 6.2, for example, shows a time series of the number of global
drought-related losses, both insured losses and total losses, based on data
from the Munich Re catastrophe database. Munich Re is a global reinsur-
ance company. They provide insurance to insurance companies, and,
therefore, try to closely track global and national trends in catastrophic
losses. In Fig. 6.2, we can see a large increase in the magnitude of annual
climate catastrophes. Annual total losses hovered around 15 billion dollars
in the early 1990s. In 2017 and 2018, total losses were around 34 and

Figure 6.2 Time series of total and insured losses from Munich Re natural disasters
database (https://natcatservice.munichre.com), accessed on August 13, 2019. Data
shown in 2018 U.S. dollars, adjusted for inflation and exchange rate fluctuations.
Data shown for climate disaster losses, which are primarily driven by droughts.
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42 billion dollars. The United Nations believes that these droughts were
related to increased global food insecurity and climate change (UN,
2018), but increases in human population and economic activity are also
definitely contributing to these spikes in disaster frequencies.

6.1.1 Exposure—an example for East Africa
Exposure and water availability metrics can be combined to provide
meaningful drought indices (see further discussion in Chapter 9: Sources
of Drought Early Warning Skill, Staged Prediction Systems, and an
Example for Somalia), and we provide here an illustrative example based
on per capita water availability (PCWA) for East Africa (Harrison et al.,
2018). This work builds off hydrologic simulations routinely produced by
NASA scientists2 using climate hazards center infraRed precipitation with
stations (CHIRPS) data and the Famine Early Warning Systems Networks
Land Data Assimilation System (FLDAS) (McNally et al., 2017). The
FLDAS monitoring system also routinely produces maps (McNally et al.,
2019) indicating per capita water stressed areas, based on the Falkenmark
index (Falkenmark, 1989). This relatively simple index categorizes water-
sheds based on the amount of per capita runoff. Based on the total
amount of per capita runoff, hydrologic basins can be categorized as facing
absolute scarcity, scarcity, stress, or no stress.

While Harrison et al. (2018) found that most basins in East Africa have
been experiencing modest increases in runoff, East African populations are
increasing very rapidly (Fig. 6.3). For example, the population of Ethiopia has
changed from about 38 million in 1980 to more than 100 million in 2017.

There is an important spatial component to these population increases.
East Africa exhibits extreme variability in terms of its mean climate.
Conditions range from extremely arid desert regions to moist tropical forests.
When examining East Africa, one tends to find a covariation in mean precipi-
tation and population density. In general, higher areas tend to receive more
rain and support more people. The areas surrounding Lake Victoria are
also humid and heavily populated. For areas with high fertility rates, high
population densities are associated with high birth rates. Densely populated
areas tend to grow much faster, in an absolute sense, than areas with relatively
low population densities. Fig. 6.4 (Harrison et al., 2018) shows basin-level
2000�17 population growth in East Africa. In absolute terms, growth has
been greatest in the Lake Victoria basin, with population increasing by more

2 https://ldas.gsfc.nasa.gov/fldas
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than 7 million between 2010�17 and 2000�09. Large (15�7 million)
changes are also observed in north-central Tanzania, central-western Kenya,
and south-central Ethiopia. Rwanda, Burundi, north-western Tanzania, and
north-eastern Ethiopia experienced basin-level population increases ranging
between 13 and 15 million.

Runoff and population can be combined to map water stress risk using
average PCWA (Harrison et al., 2018) characterized by Falkenmark cate-
gory (Fig. 6.5). Blue areas are relatively water secure; dark-red regions face
chronic severe water insecurity. The upper-left and upper-right panels in
Fig. 6.5 depict, respectively, PCWA estimates for 1982�99 and 2010�17.

Figure 6.3 Time series of national United Nations population totals for East African
countries. Courtesy: Harrison, L., McNally, A., Shukla, S., Pricope, N.G., Funk, C.C.,
Galu, G., et al., 2018. Recent Water Availability Trends and Mid-21st Century Projections
in East Africa. AGU Fall Meeting Abstracts.
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The bottom-left and bottom-right panels show projected water stress.
These projections assume stationary runoff conditions based on observed
2010�17 values, while population values are assumed to increase, based on
the average population projections provided by Boke-Olén et al. (2017).

For the historical PCWA maps, it is interesting to note that water inse-
cure regions arise in both humid areas with high populations and in arid
regions. High populations in the areas surrounding Lake Victoria result in
water scarcity, while arid regions in eastern East Africa, Eritrea, and Sudan

Figure 6.4 Basin-level population changes in Africa, based on the difference
between 2010�17 and 2000�09 Worldpop data (http://www.worldpop.org.uk/data/).
Courtesy: Harrison, L., McNally, A., Shukla, S., Pricope, N.G., Funk, C.C., Galu, G., et al.,
2018. Recent Water Availability Trends and Mid-21st Century Projections in East Africa.
AGU Fall Meeting Abstracts.

90 Drought Early Warning and Forecasting

http://www.worldpop.org.uk/data/


also exhibit substantial water stress. By 2020, these results indicate substan-
tial expansions of water insecurity. Rwanda, Burundi, western Kenya, and
most of Uganda are expected to experience chronic absolute water scar-
city. Regions near the Pangani River and the Indian Ocean, near the bor-
der of Kenya and Tanzania, may also soon exhibit chronic absolute

Figure 6.5 Maps of average per capita water availability for 1982�99 (upper-left)
and 2010�17 (upper-right) along with projected water availability for 2020 (bottom-
left) and 2050 (bottom-right). Per capita water availability characterized by
Falkenmark water stress category. Courtesy: Harrison, L., McNally, A., Shukla, S.,
Pricope, N.G., Funk, C.C., Galu, G., et al., 2018. Recent Water Availability Trends and Mid-
21st Century Projections in East Africa. AGU Fall Meeting Abstracts.
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scarcity. Most of eastern Ethiopia, Somalia, Eritrea, and major portions of
Sudan may experience severe water scarcity. Results for 2050 present fur-
ther expansion, but these estimates emphasize that East Africa may be
experiencing, in the near future, substantial increases in water stress due to
increases in population-driven exposure.

6.1.2 Vulnerability
Vulnerability is the third major dimension of drought risk. The UN DRR
defines vulnerability as The conditions determined by physical, social, economic and
environmental factors or processes which increase the susceptibility of an individual, a
community, assets or systems to the impacts of hazards. The same water deficit
may arise in a region with the same number of people but have very differ-
ent impacts based on the underlying physical, socioeconomic, and environ-
mental factors. For example, a rancher or pastoralist who depends on fodder
from a low-lying grassland close to the subsurface water table may be less
vulnerable to droughts than a rancher or pastoralist relying on grassland with
sandy soils (limited water-holding capacity) or grassland on upland areas.
Some soils and landscapes will be able to retain water more effectively.
Atmospheric water demand is another major physical determinant of drought
vulnerability. This topic is treated in detail in Chapter 7—Theory—
Understanding Atmospheric Demand in a Warming World, and we will
refer to the estimates of atmospheric water demand as reference evapotranspi-
ration (RefET). For now, though, we can all relate to variations in RefET
by our shared understanding that at different times and places, the atmo-
sphere is more likely to be able to draw moisture up from the land surface.
When relative humidity is very low, and the Sun is shining strongly, and the
weather is windy, moisture can be easily evaporated, transpired, and advected
away from the planetary boundary layer. This can reduce the amount of
moisture in soils and ponds, exacerbating the impact of precipitation deficits.
In general, but not always, variations in precipitation and RefET tend to be
inversely related. RefET tends to be high in hot, sunny, dry regions with
low relative humidity and low precipitation. The spatial structure and tem-
poral characteristics of drought risk can follow different characteristics accord-
ing to our location along the precipitation/RefET gradient.

Another extremely important aspect of vulnerability relates to a house-
hold’s, or community’s, or country’s social and economic susceptibility to
drought impacts. This very often relates to poverty and wealth, for at least
two reasons. Wealthier households, communities, and countries will be more
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likely to have invested in coping capacity to deal with hydrologic shocks.
Wealthier households, communities, states, and nations will also be better sit-
uated to absorb the fluctuations in material and economic outputs associated
with drought. For example, consider California, a very wealthy state that
experiences relatively dry conditions. California has invested heavily in water
infrastructure, with extensive water-storage facilities spread throughout the
state. These large investments make California less susceptible to interannual
fluctuations in water supply. Furthermore, individual households, communi-
ties, and counties within California tend to be relatively wealthy, and this
wealth helps them limit the impacts of water shortages.

Conversely, one might consider a smallholder farm household in a poor
arid country. Interannual water, food, and income storage options are often
very low. These households eke out a difficult living from the soil, with a
very limited capacity to build up economic reserves or store water or food
from previous rains and harvests. These poor farm households may spend
60%�70% of their household income on food and may be highly reliant
on income from farming. When crops fail, less food can be garnered from
fields and gardens, incomes from crop sales are diminished, and local food
prices often spike, creating a threefold path to food stress.

6.1.3 An Ethiopia case study
We next present a more detailed discussion of drought exposure and vul-
nerability in one food insecure African country: Ethiopia. This discussion
uses materials from the 2016 Atlas of Ethiopian livelihoods, produced by
the Food Economy Group and government of Ethiopia.3 With more than
112 million inhabitants in 2019, and an area of some 1.04 million square
kilometers, Ethiopia provides a study in contrasts. Ethiopia has many con-
trasting rainfall regimes (Fig. 6.6) that are tightly coupled to the country’s
variations in elevation (Fig. 6.7) and population. In general, mean precipita-
tion tends to increase from east to west, and at higher elevations. The arid
low-land regions in the east (tan in Fig. 6.6) are too dry to support agricul-
ture. People in these regions rely on pastoral livelihoods. The high-
elevation central highlands extend over 2000 m and are highly populated.

One measure related to both exposure and vulnerability is the average
size of Ethiopian farms, shown in Fig. 6.8 in units of “hectares” per house-
hold. The green and blue areas denote the regions in Ethiopia with sub-
stantial agricultural exposure. These are regions where households tend to

3 http://foodeconomy.com/wp-content/uploads/2016/02/Atlas-Final-Web-Version-6_14.pdf
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Figure 6.6 Ethiopian mean annual precipitation. Courtesy: Ethiopian livelihood analysis.

Figure 6.7 Ethiopian topography and drainages. Courtesy: Ethiopian livelihood analysis.
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depend on agriculture. One hectare is 100 m2 or 2.5 ac. A 1- or 2-ha farm
is, therefore, quite small. This small farm size, combined with endemically
low crop yields, results in relatively small levels of per-household crop pro-
duction. The values of these crops can be further limited by a lack of mar-
ket access—due to limited, expensive transportation and storage
opportunities. African smallholder farmers, therefore, often exhibit substan-
tial vulnerability due, at least in part, to their limited economic opportu-
nities, and limited employment opportunities. Agricultural shocks due to
water shortages can impact these poor households through multiple paths.
Droughts can reduce household incomes from crop sales, and the local
household food consumption of local farm produce. Almost all poor house-
holds also purchase food, often spending 60%�70% of limited household
incomes on food purchases. Droughts can decrease household incomes and
increase food prices, creating a triple threat of decreased incomes, increased
external food costs, and decreased on-farm food availability.

Vulnerable populations tend to be poor, and they experience severe
food insecurity when they are unable to purchase, or access, adequate
food (Sen, 1981). The poorest must compete for limited resources with

Figure 6.8 Ethiopian average-household farm size in hectares. Courtesy: Ethiopian
livelihood analysis.
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the more well-to-do members of the population. Ironically, increasing
wealth by the middle and upper class may be contributing to increased
food stress in some developing nations. For example, consider World
Bank estimates of per capita incomes for average and the poorest 20% of
Kenyans and Ethiopians (Fig. 6.9).

These estimates are based on World Bank Development indicator sta-
tistics and have been produced by combining gross national income
values, based on the Atlas method and expressed in current U.S. dollars,
population, and estimates of the income share held by the lowest 20%.
These latter factors are only observed intermittently, and linear interpola-
tion has been used to produce continuous estimates. Ethiopia and Kenya,
however, have recent surveys from 2015, during which the shares of
income estimates for Ethiopia and Kenya were 6.6% and 6.2%, respec-
tively. Just considering these national scale indicators, one might anticipate
a dramatic decline in vulnerability to food insecurity, since average
incomes for poor households have increased by more than 300% since the
early 1990s. These national averages, however, obscure important fluctua-
tions in subnational household-level incomes, as well as the potential
implications of fluctuations in prices.

We can explore these income differences by plotting (Fig. 6.10) the
difference between the national average incomes and the annual incomes

Figure 6.9 Estimates of annual per capita income for the poorest 20% of the popula-
tion. Courtesy: Chris Funk.
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for the poorest 20%. The wealthier 80% of the populations in Ethiopia
and Kenya (and almost all nations) have had their incomes increase sub-
stantially more than the poorest 20%. In Kenya, this gap has increased by
approximately 800 dollars annually. In Ethiopia the change has been
about 300 dollars annually. So, while the poorest Kenyans and Ethiopians
have been, on average, wealthier, they have also fallen farther behind eco-
nomically in terms of their purchasing power.

These income gaps may be interacting with large fluctuations in com-
modity and food prices. Commodity prices in Ethiopia and Kenya remain
very volatile, as illustrated by Fig. 6.11, that shows nominal FAO GIEWS
wholesale maize prices. These values have not been adjusted for inflation
and hence may overemphasize recent price increases. On the other hand,
incomes for the poorest households may not be keeping pace with national
inflation rates, as implied by Figs. 6.9 and 6.10. Ethiopian maize prices
spiked in September�October of 2017 and have remained relatively high
since. Kenyan maize prices exhibit a clear periodicity that aligns with major
recent droughts in 2010/11, 2016/17, and 2019. During these Kenyan price
spikes, we see a doubling of maize prices. For poor households living on a
dollar or two a day and spending 60%�70% of their household income on
food, such spikes can lead to dramatic food access limitations.

Figure 6.10 Estimates of annual “income gap” based on the difference between
mean per capita incomes, and incomes for the poorest 20% of the population.
Courtesy: Chris Funk.
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6.2 Conclusion

While a full treatment of drought management and DRR is beyond the
scope of this book, understanding how exposure and vulnerability can act
to magnify the impact of a drought shock (Fig. 6.1) is an important part
of effective drought early warning. Depending on the context, the same
precipitation deficit may have very different impacts. In a wet region with
soils with deep water-holding capacities, rainfall reductions may actually
enhance crop yields, because plant growth in such regions is often limited
by the amount of available radiation, not water. Under such conditions,
sunny skies during the growing season may enhance plant growth.
Conversely, in regions with high RefET or porous soils, water deficits
may have serious impacts. There is a temporal aspect to such changes in
vulnerability, since plant growth and evapotranspiration in many humid
and semihumid regions may be water-limited at the beginning and end of
the growing season but are typically radiation-limited in the middle of the
growing season.

We have also briefly explored, how, ironically, growing prosperity
does not necessarily mean an end to drought risk. At a global scale,
increasing population and economic activity appear related to substantial
increases in drought exposure and associated economic losses (Fig. 6.2).
While countries such as Ethiopia and Kenya are experiencing rapid eco-
nomic growth, the poorest people in these countries are still desperately

Figure 6.11 Nominal monthly Ethiopian and Kenyan wholesale prices. Data obtained
from the United Nations Food and Agriculture Organization Global Information and
Early Warning System. http://www.fao.org/giews/food-prices/tool/public/#/dataset/
domestic. Courtesy: Chris Funk.
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poor, with annual incomes of 150�450 U.S. dollars (Fig. 6.9). As the
income gap between the poor, middle, and upper classes increases in these
countries (Fig. 6.10), the vulnerability of these poor households to
drought-related food price spikes (Fig. 6.11) may actually be increasing
too. At a global scale a recent report by the United Nations Food and
Agricultural Organization (UN, 2018) finds a recent increase in the global
number of undernourished people and underscores the need to develop
enhanced climate resilience, early warning systems, and DRR.

As demonstrated by our brief analysis of exposure impacts in East Africa
(Harrison et al., 2018) (Figs. 6.3�6.5), we are likely to see increased water
stress as human populations continue to grow. Even in a world without cli-
mate change, drought risks are likely to increase. Effective DEWS will play
a critical role in managing and mitigating these risks.
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CHAPTER 7

Theory—understanding
atmospheric demand in a
warming world

7.1 Background

This book has stressed how drought arises from the interplay of moisture
supply and moisture demand. Moisture supply originates with precipita-
tion, which is then transferred and stored by soils, streams, and reservoirs.
Conservation of mass ensures that what comes down must go up via
evaporation or transpiration, or down via deep percolation into the soil.
The upward moisture flux from the land to atmosphere is commonly
referred to as evapotranspiration (ET). The focus of this chapter—the
upward limit of the ET moisture flux at any given place or time—is com-
monly referred to as reference ET (RefET), or in some instances, poten-
tial ET (PET).1 In general, RefET refers to an estimate of the ET for a
specific crop under well-watered conditions. The older PET term is not
as specific. Hence, we will use PET in our discussion of the historic
development process, and RefET to describe the modern applications.
The “Ref” in RefET refers to a standardized reference crop, typically a
short well-watered grass. While ET0 is another very commonly used term
in academic literature, we use RefET throughout this book because of its
clear meaning.

Evaporation refers to the process by which liquid water in the soil or
surface of plants changes phase to become gaseous water vapor and is ver-
tically transported by turbulent atmospheric motions into the atmosphere.
The conversion of liquid water to vapor (vaporization) requires both
energy from the Sun and vertical atmospheric motions (convection) that
extract the evaporated moisture from the lowest level of the atmosphere.

1 This chapter’s description benefits substantially from the excellent and globally used
description provided by the United Nations Food and Agriculture Organization guide-
lines for calculating crop evapotranspiration. ,http://www.fao.org/3/X0490E/
x0490e00.htm..
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Without adequate insolation, there will not be adequate energy to support
the vaporization of liquid water. Without adequate convection, the lowest
atmospheric level will become saturated, and moisture will condense as
rapidly as it evaporates. Hence, there must be less water vapor in the
lower atmosphere than at the surface. Over time, however, in the absence
of wind, atmospheric mixing will equilibrate the amount of moisture at
these two levels. Low-level winds, therefore, are a third critical factor for
evaporation. Shade and the amount of available soil moisture will also
impact evaporation rates.

Transpiration refers to the process by which the liquid water in plants
is vaporized and removed by the atmosphere. Most crops and many plants
lose most of their water through small pores in their leaves called stomata.
These stomata are used to draw carbon dioxide (CO2) out of the atmo-
sphere, which can be combined with water and transformed into sugars
and carbohydrates via photosynthesis. This process is referred to as plant
respiration. The same small stomatal openings that let in CO2 also emit
water vapor from the leaves, as it transpires into the atmosphere. Like
evaporation, transpiration is also controlled by the local humidity gradient,
air temperature, radiation, and wind. The rate of transpiration is further
controlled by the physical characteristics of the plant. In particular, the
total surface area covered by the leaves of many plant species typically
changes across the varying stages of their phenological cycles, thus chang-
ing the total area over which transpiration can occur. In addition, the size
of the stomatal openings, as well as the way in which they respond to
changes in the plant’s water status and environmental conditions, such as
air temperature, also vary for different plant species.

In the mid-20th century the American geographer and climatologist
Charles Warren Thornthwaite (1899�1963) incorporated such thinking
in his development of climate classification systems. To represent atmo-
spheric water demand, Thornthwaite introduced, in the 1940s, the con-
cept of “PET,” as the amount of water which could evaporate and
transpire from a surface if unconstrained by water supply (Thornthwaite,
1948).

A central insight of Dr. Thornthwaite was that precipitation alone was
insufficient to categorize climate: “We cannot tell whether a climate is
moist or dry by knowing the precipitation alone. We must know whether
precipitation is greater or less than the water needed for evaporation and
transpiration . . .. Where precipitation is in excess of water need, the cli-
mate is moist. Where the water deficiency is large in comparison with the
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need, the climate is dry. Where precipitation and water need are equal or
nearly equal, the climate is neither humid nor arid” (Thornthwaite,
1948). To address the question, Thornthwaite first considered the various
factors contributing to both evaporation and transpiration. Taken
together, these two moisture fluxes are described as ET.

In Thornthwaite’s seminal 1948 paper, he argues that in many parts
of the world, the amount of available water is limited, and resulting
actual ET (AET) values that are less than that region and season’s PET.
At a set location on the Earth, most places also experience a seasonal
cycle with a dry season (when RefET exceeds PET), and a wet season
(when PET equals RefET). Thornthwaite (1948) lays out a number of
physical and biological processes that link increases in temperature to
increases in transpiration or evaporation. Plants use transpiration to dis-
sipate heat, helping to optimize leaf temperatures. Plant growth rates
are also related to increases in temperature. This logic, and a lot of
empirical analysis, leads to the following Thornthwaite equation for
PET, as laid out in a recent comparison of numerous PET/RefET for-
mulations (Maes et al., 2019):

Teff , 0then PET5 0

0,Teff , 26then PET5αTh
10Teff

I

� �b N
360

� �

26,Teff then PET52 c1 dTeff 2 eT eff
2

where Teff is the effective average daily temperature in degrees Celsius
[Teff5 0.36(3Tmax2Tmin)], αth5 16, if the daily temperature is less than
0. I is a function of the sum of the annual monthly average temperatures
at each location I 5

P
Tmonth=5

� �1:514
. N is the number of daylight

hours, b is a parameter depending on I while c, d, and e are empirical con-
stants (Maes et al., 2019).

While rather convoluted, Thornthwaite’s formulation was relatively
easy to calculate with available climate data—that is, monthly air tem-
perature data. Fig. 7.1 shows Thornthwaite’s estimates of RefET for the
continental United States. This ease of calculation has led to the contin-
ued use of temperature-based RefET estimates. It should be noted,
however, that such approaches often lead to a tendency to overestimate
the influence of temperature (and global warming) on RefET. More
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physical models, such as the Penman�Monteith model, discussed later,
are generally preferable since we no longer face the same data
limitations.

It is quite interesting that just as Thornthwaite was publishing his
largely empirical results, the physicist Howard Latimer Penman
(1909�84) was attacking the problem from a theoretical perspective
(Penman, 1948). This endeavor has led to the most widely used RefET
formulation, the Penman�Monteith equation. It is worth reviewing
Penman’s (1948) formulation. Penman’s particular genius was to frame
PET as founded on two basic requirements: (1) a supply of energy that
enables water molecules to transition from a liquid to a gaseous phase and
(2) a mechanism for removing the resulting water vapor. Without “(1)”
water will be unable to evaporate in the first place. Without “(2)” a water
molecule may evaporate into a layer just above the land surface, but rising
humidity levels will produce an equal and offsetting rate of condensation.
Thus an evaporating land surface must provide a “sink” by which the
moisture is transferred away from the land surface.

Penman (1948) treats the “sink” constraint first, since it was fairly well
understood at the time, having been treated a century prior by the British
physicist and chemist John Dalton (1766�1844). Dalton introduced the

Figure 7.1 Average annual PET, as estimated by Thornthwaite in 1948. PET, Potential
evapotranspiration.
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atomic theory into chemistry—a theory in which chemical elements com-
prise identical, indivisible atoms of different molecular weights. Dalton
produced an expression for the rate of evaporation, which we present
here as a function of water vapor pressure (ea) and saturation water vapor
pressure (es). The water vapor pressure is the atmospheric pressure (in
Pascals) of the water vapor molecules in a parcel of air. The saturation
vapor pressure is the upper limit of the water vapor pressure for a fixed air
temperature and density. When ea equals 0, the air will have a relative
humidity of zero. When es5 ea the air will be fully saturated, and the rela-
tive humidity will be 100%. Dalton’s evaporation formula, as expressed by
Penman, was

E5 ðes 2 eaÞf ðuÞ
f(u) in this formulation is a function of horizontal wind speed (u) and E is
evaporation. While this term is based on horizontal wind speeds, it is
really parameterizing (for the most part) vertical mixing in the lowest por-
tion of the atmosphere. As air moves across the land surface, turbulent
flows mix the lowest several meters. Faster winds produce more turbulent
flow, more mixing, and a greater potential atmospheric “sink” for water
vapor, except when es5 ea. When the air is fully saturated, the air being
mixed down will be just as moist as the air being mixed up, and the drain
on the atmospheric “sink” will be plugged. A very common expression
for the es2 ea term is vapor pressure deficit (VPD).

Penman’s other major constraint on E was the total amount of
energy available to transition water molecules from their liquid to gas-
eous phase. This total energy is based on the total amount of “net radia-
tion” (Rn) minus the loss of heat energy into the soil (G). The net
radiation is a combination of the incoming longwave and shortwave
radiation, reflected outgoing shortwave radiation, and emitted outgoing
longwave radiation. Shortwave radiation is radiation in the near infra-
red, visible or higher electromagnetic frequencies. Longwave radiation
is radiation in the mid-infrared or lower frequencies. The Rn term is
dominated by an approximate balance between downwelling shortwave
radiation (i.e., sunlight) and upwelling longwave radiation emitted by
the Earth’s surface. In places where moisture can be evapo-transpired,
the difference between these two terms is largely made up by the
energy associated with the AET flux, that is, in approximate terms, the
energy provided by sunlight� emitted heat energy1 energy used to
vaporize water.
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7.2 Reference evapotranspiration resistance terms

We now follow the classic description of crop RefET as laid out by the
United Nations Food and Agricultural Organization’s “Irrigation and
Drainage Paper 56” (Allen et al., 1989). Penman’s original formulation
(1948) was derived from estimates based on evaporation from an open
water surface using standard climatological weather observations. Later
scientists came to recognize that Penman’s original formulation did not
consider two important sources of ET resistance from the land surface.
The first resistance term, the “bulk surface resistance” (rs), parameterizes
the net resistance experienced by water vapor flowing from the soil sur-
face, from leaves, or through stomata. The second resistance term, the
“aerodynamic resistance” (ra), describes the resistance associated with
vertical moisture transports from air moving across and through complex
vegetated surfaces. The term “resistance” here is analogous to resistance
in an electrical current. In an electrical circuit, voltage (V) equals the
product of current (I) and the resistance (R), V5 IR. For a set voltage,
increasing the resistance decreases the current. Current in this instance
would be analogous to RefET. Resistances in series multiply, so for
RefET, Rtotal5 rs3 ra. Fig. 7.2 shows this relationship schematically (see
footnote 1). John Lennox Monteith2 contributed a great deal to the
development of these resistance terms and used these terms to improve
Penman’s original formulation. The combined Penman�Monteith algo-
rithm is described in the next section (Allen et al., 1989).

Figure 7.2 Schema describing bulk and aerodynamic resistances.

2 https://royalsocietypublishing.org/doi/10.1098/rsbm.2014.0005
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7.3 Defining reference crop evapotranspiration

Reference crop ET (i.e., RefET) is defined as the ET rate from a well-
watered large expanse of a reference surface, which is almost always a
grass reference crop with defined characteristics. The definition of
RefET is typically superior to other denominations such as PET,
because it is clear and well defined. It should be noted, however, that
in applications such as ecosystem modeling and hydrologic modeling, a
crop-centric definition of RefET might not be appropriate.
Historically, the concept of RefET was introduced to support the study
of evaporative demand independent of considerations of crop manage-
ment and crop type (Allen et al., 1989). Importantly, the only factors
influencing RefET are weather: radiation, humidity, temperature, and
wind speeds. RefET estimates the evaporative demand of the atmo-
sphere at a given location, at a given time of the year, without reference
to soil parameters or crop specifics.

The FAO 56 reference crop is assumed to be a short (0.12-m high)
green grass with a fixed surface resistance (rs) of 70 s m

21 and an albedo of
0.23. This albedo means that the surface is quite dark and only reflects
23% of the downwelling shortwave radiation. The aerodynamic resistance
(ra) will be a function of wind speed: ra5 208/u2m, where u2m is the wind
speed at 2 m.

7.4 The FAO 56 Penman�Monteith formulation

We are now ready to present the Penman�Monteith equation. While
the equation is quite complex, we will see that it can be understood as
the combination of a radiative and ET term.

RefET5
0:408Δ Rn2Gð Þ1 γ 900= T 1 273ð Þ� �

u2m es2 eað Þ
Δ1 γ 11 0:34u2mð Þ

RefET in this equation is expressed in mm day21. Rn2Gð Þ denotes
the energy provided by radiation (net radiation minus heat loss into the
Earth), u2m es 2 eað Þ describes the potential vertical moisture flux produced
by atmospheric mixing in the planetary boundary layer. This term is a
function of 2m wind speed (u2m) and the VPD es2 eað Þ.

This formulation makes use of the psychrometric constant (γ) and
the slope of the saturation water vapor curve (Δ). It is important to
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note that there is a nonlinear relationship between air temperature and
saturation vapor pressure (es), as well as between air temperature and
the saturation vapor pressure�air temperature slope (Fig. 7.3). Between
freezing temperature (0°C) and very warm temperatures (45°C), we see
a B10-fold increase in the water-holding capacity of air. At saturation
(100% humidity), very warm air can hold much more water than very
cold air. This temperature dependency affects both the value of es and
Δ (top and bottom plots in Fig. 7.3).

The FAO 56 formulation can be broken into two components: a
radiation term and a vertical moisture transport term, both of which are

Figure 7.3 Plots of air temperature and saturation vapor pressure (kPa) (top) and
air temperature and the temperature slope of saturation vapor pressure (bottom)
(kPa °C21).
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modifications of the original formulation proposed by Penman in 1948
(Eq. 16 in Penman, 1948). We can rewrite the FAO 56 formulation to
emphasize this decomposition.

RefET5
0:408Δ Rn2Gð Þ

Δ1 γ 11 0:34u2mð Þ 1
γ 900= T 1 273ð Þ� �

u2m es2 eað Þ
Δ1 γ 11 0:34u2mð Þ

Two basic factors control the RefET magnitude. There must be a sup-
ply of energy to provide the energy required to transform liquid water
into water vapor Rn2Gð Þ, and there must be some mechanism for
removing the vapor from the planetary boundary layer [u2m es 2 eað Þ], that
is, there must be a sink for vapor. The Δ and γ terms in the
Penman�Monteith equation arise from the expected relationship
between air temperature and vapor pressure gradients. The (11 0:34u2m)
term reflects the combined influence of bulk and aerodynamic resistance
terms for the reference crop cover.

7.5 Temperature alone is insufficient to estimate reference
evapotranspiration

Ultimately, there are three factors that tend to dominate RefET varia-
tions in space and time: changes in radiation, wind speed, and VPD.
Changes in radiation and VPD often relate to changes in air tempera-
ture, since radiation increases temperatures, and there is a direct nonlin-
ear relationship between es and air temperature (Fig. 7.3, top). The use
of temperature-based estimation procedures, like that developed by
Thornthwaite (1948) can be convenient but fail to represent the key
processes driving RefET. Hence, such approaches can be misleading,
especially when used to assess the impacts of climate change. Climate
change can modify the terms in the FAO 56 formulation in compli-
cated ways. We can expect longwave radiation to increase by a few
watts per meter squared (W m22), but it may also be difficult to predict
variations in cloud cover and shortwave radiation. Increasing air tem-
perature will enhance saturation vapor pressures (es), but they will also
increase the slope of saturation vapor pressures (Δ) (Fig. 7.3), which
appears in the denominator of the FAO formulation. These complexi-
ties and considerations suggest caution when assessing the potential
impacts of climate change on RefET.
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7.6 Reference evapotranspiration decompositions and
Morton’s complementary hypothesis

While beyond the scope of this book, interested readers may wish to
examine research focused on decompositions of RefET fields (Hobbins
et al., 2012). This work analytically decomposes the RefET signal into
forcing by radiation, wind speeds, and VPD variations. Another important
avenue of research builds on Bouchet’s description of the “complemen-
tary relationship” (Bouchet, 1963) between RefET and AET. In general,
it is important to recognize that the hydrologic balance at any given loca-
tion and time period on the planet will either be energy-limited or water-
limited. Energy-limited areas have ample soil moisture and will have AET
rates capped by the amount of available radiation. Water-limited areas, on
the other hand, will have insufficient soil moisture and vegetation to sup-
port an AET flux equivalent to the net radiation balance. Under water-
limited conditions, variability in AET drives a complementary variation in
RefET through energetic exchanges across the land�atmosphere interface
(Hobbins et al., 2016). In general, neglecting heat storage, the energy bal-
ance at a given location on land can be written as (Rn2G)5λ � 1H,
where λ is the latent heat of vaporization, AET the amount of water
vapor evaporated and transpired, and H is the sensible heat flux from the
surface. H and λ �AET are expressed as energy fluxes in W m22. H repre-
sents the vertical advection of heat energy by atmospheric mixing in the
planetary boundary layer. H typically covaries with u2m Ts2Ta2mð Þ. Ts and
Ta2m represent surface and 2m air temperature, respectively.

When a location is water limited and no new water inputs occur,
AET will gradually decrease, while H, temperature, es and VPD will
increase. Following Hobbins et al. (2016) treatment, these relationships
lead to a general complementary relationship, valid for water-limited con-
ditions, which we can approximate as:

AET � 2ETW 2RefET

ETw in this formulation is assumed to represent an AET rate for a
comparable regional-scale wet surface with similar insolation and wind
speed characteristics. Central to this relationship is that when the land sur-
face is experiencing water stress, AET will decrease due to lack of avail-
able water, while RefET exhibits a similar complementary increase due to
increasing sensible heat. This can lead to compound drought stress when
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low water availability is accompanied by increased atmospheric water
demands (Fig. 7.4).

7.7 Spatiotemporal variations in reference
evapotranspiration and actual evapotranspiration, and
their relationship to vulnerability and exposure

The complementary framework also provides a valuable conceptual tool
for understanding the temporal and spatial evolution of drought, and how
drought shock may interact with exposure and vulnerability to form a cli-
mate risk, as discussed in Chapter 6, Tools of the Trade 4—Mapping
Exposure and Vulnerability. Most human and natural systems are adapted
to the natural progression of rainy seasons. Setting aside regions that
depend on wintertime precipitation (stored in snowpack and reservoirs),
most areas depend heavily on the seasonal progression of summer rains,
which tend to move north and south along with the passage of the Sun
and the latitude of maximum insolation. Many such regions experience a
seasonal progression (Fig. 7.5) from a water-limited state at the beginning
of the season to an energy-limited state in the middle of the season, only
to return to a water-limited state at the end of the rainy season. Before
the rainy season, cloud-free skies bring copious solar radiation, and the
lower atmosphere is typically quite dry, with ea,, es, leading to large
VPDs. As the rains commence, clouds reduce the incoming radiation,
while also bringing increases in moisture that reduce the VPD.

Figure 7.4 Schema depicting the complementary relationship between AET and
RefET. AET, Actual evapotranspiration; RefET, reference evapotranspiration.
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Assuming that the farmers’ crop selection is well-aligned with the cli-
mate, it is typical to see crop emergence occur in the first water-limited
stage of the growing season. These emergent plants require relatively little
water. Then, as RefET decreases and precipitation and soil moisture
increase, many annual plants dedicate energy from sugars and carbohy-
drates to putting on leaves. In this vegetative stage, plants focus on
increasing their ability to absorb sunlight and transform it into more sugars
and carbohydrates. Adding green biomass and the process of photosynthe-
sis both require substantial amounts of water, and this requirement typi-
cally coincides with a period of time with, on average, high precipitation
and relatively low RefET. Within this mid-season period, the overall
hydrologic system is often energy-limited, because the moisture supply
exceeds RefET.

Once cereal crops establish plentiful green biomass, they typically tran-
sition to a grain formation and filling stage (Fig. 7.5). The triggers for this
transition, however, can vary substantially between crops and between
different crop varietals. Some crops, such as maize, will transition based
on accumulated “degree days.” Other crops such as millet or sorghum
may have triggers associated with the position of the Sun and the length
of the local day.

When crops transition to the grain-filling stages, they dedicate substan-
tial energy resources to the production of gene-carrying grains, that is,
ears of corn, spikes of wheat, grains of rice, and pods of soy beans. After
grain filling an annual grass or cereal plant’s work is done. Energy from
the Sun has been absorbed, combined with water and CO2, and

Figure 7.5 Schema depicting the complementary relationship between AET and
RefET, along with a typical seasonal progression for a crop-growing region. AET,
Actual evapotranspiration; RefET, reference evapotranspiration.
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converted to seeds containing the next generation’s potential growth and
expansion. Leaves brown and drop off (senesce), and in this final stage of
a crop’s life cycle, anomalous wet conditions can also be harmful to farm
production by making it harder to dry and harvest crops from the field.

The seasonal crop progression can be viewed both through a lens of
exposure and vulnerability, as well as through a lens of relative water sup-
ply and demand. Here, we use the term “exposure” to refer to potential
agricultural losses. Early in the season, vulnerability to rainfall deficits is
fairly high, due to relatively high RefET conditions and relatively low
average rainfall values. Exposure, however, may also be relatively modest.
Plants that survive an early season drought may recover with bountiful
mid-season rains. If the season is long enough, a failed planting may be
replaced by another, more successful sowing. On the other hand, in areas
where the growing season is short, a disruption at the onset of the season
may make it very hard to recover, since the typical remaining period of
adequate moisture supply (after the disrupted onset period) may be too
short to support both the vegetative green biomass production and grain
filling required to produce a successful harvest.

During the middle of the season, conversely, it is typical to find rela-
tively low crop vulnerability, but relatively high crop exposure. This is
especially true during the grain-filling stage. While infrequent in most
good crop-growing areas, a transition to drought conditions, combined
with feedbacks associated with the complementary relationship, can cause
severe impacts just when crop exposure is highest. If soil moisture deficits
lead to a reduction of AET, then the sensible heat flux must compensate
to balance net radiation, which leads to an increase in air temperature.
Since drought conditions are also typically accompanied by increased solar
radiation—due to reductions in cloud cover—the increase in solar radia-
tion also increases air temperature and RefET. These coupled processes
often lead to increases in both RefET and air temperature. Increases in
these terms can desiccate and damage crops, and such sensitivities can be
especially critical during tasseling and grain-filling stages. Anomalous
spikes in mid-season air or land surface temperatures can be a strong indi-
cation that rainfall deficits and increased atmospheric demand are likely to
take their toll on crops.

These same general considerations can also be applied spatially.
Consider Fig. 7.6, which sketches schematically (from left to right) a
humid region with high precipitation and relatively low RefET, a semi-
humid region with both moderate precipitation and RefET, and an arid
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region with relatively low precipitation and relatively high RefET. In
many cases, population densities and economic investments are greater for
humid areas than for arid regions. On the left of Fig. 7.6, we might find
the grain baskets of the world. On the right side of Fig. 7.6, we might
find extremely food insecure pastoral or agropastoral communities. For
the latter, two out of three seasons might be poor, and these fragile popu-
lations eke by on proceeds from that one infrequent good year. On the
left, we might find a high degree of climatic stability. Most years are
good, and agricultural vulnerability is relatively low. In between these
extremes, we can identify a region with moderate climate vulnerability.

Effective DEWS need to be concerned with droughts in all three types
of regions. Droughts in dryland areas can be devastating, and frequent,
but the magnitude of overall exposure in these regions may be compara-
tively low, especially when overall population totals dependent on agri-
cultural livelihoods in these arid lands are low. However, when
characterized by high populations of pastoral and agropastoral communi-
ties, droughts in these regions can still lead to widespread food insecurity
and even famine, which, in turn, require millions, or even billions, of

Figure 7.6 A conceptual representation of the interplay between spatial or temporal
variations in precipitation and RefET. Because precipitation and RefET tend to be
inversely correlated over space and time, there are often regions or periods with rel-
atively high precipitation and low RefET, regions or periods with relatively low pre-
cipitation and high RefET, and regions or periods in the middle. Drought shocks in
the first category might correspond to water deficits in highly product crop produc-
tion regions, or water deficits during the critical vegetative and grain filling periods
of crop growth. While less common, such shocks can be very damaging. Drought
shocks in drier regions or time periods may be more frequent, but less damaging,
since humans have typically adapted to these drier conditions. RefET, Reference
evapotranspiration.
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dollars in emergency assistance. On the other hand, when droughts do
strike humid areas with exposure, the associated losses can be very large.
In 2012 drought struck almost the entire United States (cf. Fig. 2.5), while
in 2015/16, a severe crop failure in the highly productive maize triangle
in South Africa contributed to massive food insecurity across most of
southern Africa. Understanding RefET and the role it plays in droughts
can help us identify emerging water crises in all climate regimes.
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CHAPTER 8

Theory—indices for measuring
drought severity

8.1 Introduction

This chapter will provide a general overview of some of the many possi-
ble indices used to monitor and quantify droughts. It should be noted at
the outset that there are too many different potential drought indices to
list them all here. Our purpose, rather, is to provide a general description
of factors common to most drought indices and introduce a few of the
most commonly used index categories. A more detailed discussion of
drought indicators and drought indices1 (Svoboda and Fuchs, 2016),
which this chapter builds on, has recently been produced by the World
Meteorological Organization in collaboration with the Global Water
Partnership, the National Drought Mitigation Center, and the Integrated
Drought Management Programme. Readers interested in a more detailed
treatment may wish to consult this excellent resource.

Svoboda and Fuchs (2016) begin their description by highlighting the
difference between drought indicators and drought indices. Indicators such
as precipitation, temperature, runoff, soil moisture, snowpack, reservoir
levels, or streamflow describe potential drought conditions. Indices are
indicators that involve additional computations that can provide qualita-
tive assessments of the severity, location, timing, and duration of events.
In the broadest terms, most index values add qualitative information by
either (1) reexpressing hydrologic information in the context of some
type of water availability context, and/or (2) reexpressing drought infor-
mation in terms of its historical context.

The latter transformation is conceptually more straightforward, so we will
discuss it first. Droughts are typically infrequent events, and the dangers posed

1 World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016:
Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated
Drought Management Programme (IDMP), Integrated Drought Management Tools and
Guidelines Series 2. Geneva. ,https://www.drought.gov/drought/sites/drought.gov.
drought/files/GWP_Handbook_of_Drought_Indicators_and_Indices_2016.pdf..
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by droughts often increase rapidly as their infrequency increases. A 1-in-10
or 30- or 50-year drought will be much more intense, destructive, and dan-
gerous, and carefully constructed high-quality monitoring systems can help
rapidly identify such extreme events. Most human and environmental systems
tend to be resilient to a frequent 1-in-3-year dry season. Few systems will be
prepared to shrug off a 1-in-a-100-year drought. Assume that we have iden-
tified a drought within a given region and time period. In general, there will
now be four typical approaches that can be used to express the “frequency”
information associated with this specific drought. We can refer to the
drought’s rank, percentile value, return period, or standardized value.

Rank is one of the easiest expressions to understand. Ranks are
derived from (1) taking all the indicator values associated with a region
and time period, (2) sorting these values, and (3) determining the position
(or rank) of the particular indicator of interest. Assuming the data is accu-
rate, and the period of record adequate, such analysis can yield powerful
statements such as “an analysis of rainfall data suggests that the recent
drought is the worst on record” . . . or “. . . second worst on record”. . .
or “. . . third worst . . ..” These numbers (one, two, and three) represent
the rank of the values from lowest to highest. Of course, the length of the
time series plays an important role in how we might interpret this infor-
mation. An exciting new satellite data set might only have 6 years of data.
In this context, “lowest” might just mean below normal. On the other
hand, in some contexts and countries, we might have more than a hun-
dred years of information. In such a setting a rank of one, two, or three is
very likely to indicate exceptionally dry conditions. This context is often
provided by statements such as “During time period XYZ, region PDQ
experienced the lowest rainfall/runoff/soil moisture/streamflow/snow-
pack/reservoir levels/vegetation health in MNO years.”

While powerful and precise, statements such as these are hard to map
and analyze operationally, especially when dealing with multiple regions,
time periods, and indicator variables. One very common way to transform
ranks is to reexpress them as percentiles. A percentile is simply the
observed rank divided by MNO, where MNO represents the number of
observations in the time series. For seasonal averages, this will be the
number of years of data. Ranging from 1/MNO to 1, these percentile
values describe the position of a particular event within the overall distri-
bution of observed outcomes. Assuming MNO is measured in years, an
event with a percentile of 1/MNO is a one-in-MNO years low event.
A percentile of 0.5 corresponds to a once-every-other-year event.
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A percentile value of 0.5 represents the median of our distribution, so we
expect half the outcomes to be higher and half the outcomes to be lower.
A percentile of one indicates a one-in-MNO-year high event. In general,
caution should be applied when interpreting extreme values. By definition
the tails of such distributions are sparsely populated. Nevertheless, the
early and accurate identification of infrequent droughts, as opposed to fre-
quent droughts, is a major objective and societal benefit provided by
effective drought early warning systems (DEWS).

In addition to percentiles, another very common approach to expres-
sing drought indices is to formulate them as standardized “z-scores.” This
approach builds on the fact that many people are familiar with the stan-
dard normal distribution, that is, the Gaussian normal distribution (bell
curve) with an expected mean of 0 and an expected standard deviation of
1. The value of such a framework is an ease of interpretation. Values near
0 will be “typical.” Values beyond 6 0.7 standardized anomalies will be
abnormal. Values beyond 6 1.2 will be quite extreme. Values beyond
6 2 standardized anomalies will be exceptional.

There are two basic approaches used to calculate standardized anoma-
lies—nonparametric and parametric. A nonparametric approach builds on
the empirical percentile calculation described earlier. Data are ranked and
expressed in percentiles by dividing by the total number of observations.
These percentile values can then be directly transformed into standardized
z-scores by using software to translate a percentile into the corresponding
standard normal z-score values. For example, a percentile of 0.16 will
produce a standard anomaly of 21. A 21 z-score corresponds to a 1-in-
6-year low value. A percentile of 0.5 will be associated with a z-score of
0. These values also correspond with the median of the distribution.
A percentile of 0.98 will be associated with a z-score of 2.0.

A very commonly used alternative “parametric” approach involves (1)
fitting a statistical distribution to the observed data, then (2) using this dis-
tribution to identify theoretical percentile values, and then (3) translating
the resulting percentile values into z-scores from a standard normal distri-
bution with a mean of 0 and a standard deviation of 1. This parametric
approach can help overcome deficiencies in the observed data set. For
example, the limited observed time series may have a gap, resulting in
two quite different sorted values being assigned quite similar ranks and
percentile values. Extreme values may also not be captured well, given
the short period of record of most historical hydrologic observations.
In the parametric approach the drought analyst fits parameters to the
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observed distribution and then uses those parameters to transform the
observed values into standardized z-scores from a normal distribution
with a mean of 0 and a standard deviation of 1.

The simplest example of such a transformation involves the transformation
of an observed value from a nonstandard normal distribution to a “standard
normal” distribution with a mean of 0 and a standard deviation of 1. Some
types of data, such as air temperatures and vegetation indices, are often well
described by normal distributions. As an illustrative example, assume region A,
in season B, has an average Normalized Difference Value Index (NDVI) of
0.4. Is this above or below normal? Exceptionally so or just a little? To imme-
diately convey such information, we can calculate the historical mean (μ) and
standard deviation (σ) of NDVI in this region and season. Now, we can
express the observed value as a z-score: ZNDVI5 (NDVIobs2μ)/σ. If
μ5 0.6 and σ5 0.1, we are looking at exceptionally low NDVI values,
ZNDVI5 (NDVIobs2 0.6)/0.1522 standardized anomalies. If μ5 0.6 and
σ5 0.4, we are looking at unexceptionally low NDVI values,
ZNDVI5 (NDVIobs2 0.6)/0.5520.5 standardized anomalies.

This general approach can be extended to transform variables with dif-
ferent, non-Gaussian distributions. For example, precipitation distributions
tend to have skewed distributions with “fat tails.” It is typically common
to have many observations with low or no rainfall, and a few observations
with extreme rainfall values. These distributions are often fit with three
parameter conditions or gamma distributions. One parameter describes
the probability of a nonrain event. The other two parameters (the shape
and scale) describe the skewed distribution of the nonzero precipitation
events. While the details may vary, in all cases, a parameterized distribu-
tion can be used to translate an observed value into a percentile between
0 and 1. Then, this percentile value can be translated into a z-score based
on the standard normal Gaussian distribution.

This process, applied to precipitation, is used to produce one of the
most popular indices: the Standardized Precipitation Index (SPI) (McKee
et al., 1993). This index is extremely popular because (1) precipitation var-
iations tend to be the single most important driver of most droughts, (2) it
is very easy to interpret, (3) it is fairly easy to calculate, and (4) precipitation
data are usually readily available. The World Meteorological Organization
has a manual dedicated to the SPI.2 The SPI can be easily calculated at a

2 http://www.droughtmanagement.info/literature/
WMO_standardized_precipitation_index_user_guide_ en_2012.pdf
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range of temporal scales, which typically range from 5 days to as many as
12 or 24 months. Soil moisture will tend to respond to short-term SPI con-
ditions. Water storage, groundwater, and streamflow may reflect longer
term precipitation anomalies. In general, 1- to 2-month SPI values can be
used to examine meteorological drought. The 1- to 6-month SPI is often
used to assess agricultural drought. The 3- to 24-month SPI may be used
to examine hydrologic drought.

Fig. 8.1 provides examples of SPI calculations. The top panel shows a
typical gamma distribution for a shorter time period and/or a drier loca-
tion. Such locations tend to have values near 0. Occasionally, but infre-
quently, relatively extreme values will be observed. Such distributions,
which are very common precipitation distributions, will have median
values that are lower than the mean. Typical values, characterized by the

Figure 8.1 Examples of SPI calculations based on a gamma distribution (top) and
standard normal distribution (bottom). SPI, Standardized Precipitation Index.
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median, will be lower than the distribution’s mean value, which will be
pulled by a few wet events.

We can walk through the SPI calculation process for the example
rainfall amounts: 8, 20, and 60 mm, marked A, B, and C in Fig. 8.1. The
top panel of this figure displays a typical probability distribution function.
The y-axis displays the probability of a certain rainfall amount. The x-axis
shows the rainfall amounts ranging from 0 to 100 mm. These totals are
characteristics of 10-day totals in semiarid growing regions. A value of
8 mm might be associated with a theoretical percentile value of 0.16. To
transform this into a standard normal z-score the equations for a Gaussian
standard normal distribution are used to calculate the corresponding value
from the normal distribution (shown in the bottom panel). This would
result in a value of 21 standardized anomalies. This process can be
repeated for a value of 20 mm, corresponding to the median of the
observed data set. The corresponding percentile value and associated stan-
dard normal z-score would be 0.5 and 0Z. The median of the Gaussian
distribution is mapped to the mean of standard normal distribution. Our
final value is a rainfall total of 60 mm, which we assume to be associated
with a percentile value of 0.98. This would correspond with an SPI value
of 12Z.

Advantages and disadvantages of “standardizing” index values: there are a
number of different approaches to standardizing index variables using ranks,
empirical percentiles, theoretical percentiles (based on parameterized distri-
butions), and z-score-based indices such as the SPI. All of these approaches
share certain advantages. First, they allow values in different climatic regions
and different aggregation periods to be compared. Second, they express the
observed conditions in terms of a probabilistic historic context. A historical
database is used to determine how likely or frequent the observed values
are, given previous observations. While these are substantial advantages,
they also come with inherent disadvantages. Standardized anomalies can
obscure important physical aspects of the systems being analyzed. For exam-
ple, consider a 23 3-month SPI outcome for an extremely wet region.
The rainfall variability in such a region might be very low compared to that
region’s mean rainfall. So, a 23 SPI value might still represent plenty of
precipitation from an agricultural or regional water use perspective.
Conversely, consider the case of a 3-month 23 SPI value from a region
and time period that typically has almost no precipitation. Such SPI values
may have limited physical meaning.
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8.1.1 Consider multiple expressions of each individual data
source
In addition to examining multiple sources of information, it is also highly
recommended to examine each individual data source using multiple expres-
sions. Standardized values such as SPI can be used to rapidly compare
regions and seasons but also tend to generate a lot of potential false alarms
associated with areas where precipitation variability is very low. This can
draw the analyst’s attention to out-of-season regions. One should also exam-
ine the individual data source in the original units and in terms of arithmetic
(observation minus mean) or percent anomalies (1003 observation divided
by the mean). When calculating percent anomalies, a small value is often
included in the denominator to gracefully handle situations when the mean
approaches 0. While the interpretation of absolute values and anomalies will
be case-specific, this specificity can be powerful. For example, for an agricul-
tural or pastoral outcome, an annual total precipitation of 200 mm is almost
certain to be inadequate. Other indicator variables that have fairly direct
physical interpretations [soil moisture, NDVI, or actual ET (AET)] also pro-
vide meaningful bases for drought detection.

8.2 Length of record and nonstationary systematic errors

Unfortunately, drought analysis can be very demanding when it comes to
data set accuracy. We are often concerned about anomalies in hydrologic
conditions in relatively dry areas; hence, relatively small errors can be
problematic. This can be especially problematic when errors are systematic
(i.e., nonrandom). While in practice it is hard to separate these terms, we
can conceptually decompose a data source’s error into two components:
random error and systematic error. For this discussion, let us assume that
random errors have a mean of zero and some nonzero variance, while sys-
tematic errors have a nonzero mean but zero variance. Consider a set of
satellite-based rainfall estimates. They might systematically over- or under-
estimate rainfall at a given location by an amount expressed by the bias
(β). They will also have a random error component that we can represent
as εt, where t represents time. If we average over some N time steps,
the expected value of the bias error will be Nβ. The systematic errors
accumulate. This may not be a problem if the bias is relatively small com-
pared to the mean and variance of the true precipitation distribution.
Furthermore, expressing the satellite observations as either standard
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anomalies, arithmetic anomalies, or percent anomalies will remove the
influence of this systematic error entirely. The random errors, even if
quite large, will tend to cancel each other out over time. Some errors will
be positive, some errors will be negative, and when these errors are added
together, the variance of the composite error term will be substantially
smaller. This is very good news for DEWS. Data sets do not need to be
perfect. Averaging over longer time periods or regions will tend to
increase our signal to noise ratios, making it easier to identify large anom-
alies. This cancellation, which is an expression of the central limit theorem
in statistics, is good news for many data-sparse regions of the world.

On the other hand, nonstationary systematic errors can be huge problems
for DEWS. If a data set’s bias becomes nonstationary in an appreciable way,
that is, β becomes a function of time, βt, then the nonstationary systematic
errors may become as large as the true year-to-year variations in the variable
of interest. Averaging over space and time may accentuate these systematic
errors, overwhelming the cancelation of local random error values.

Unfortunately, all three primary sources of drought indicator values, rea-
nalyses, satellite observations, and interpolated station observations, may
contain nonstationary systematic errors. Reanalysis systems often incorporate
changing constellations of satellites and this can produce dramatic shifts in
estimated precipitation, moisture, temperature, and reference evapotranspi-
ration (RefET), especially in the latter part of the 1990s when microwave
sounding units began providing estimates of atmospheric profiles. Shifts in
satellite observing systems can also create inhomogeneities in satellite-based
estimates of precipitation, vegetation, and soil moisture.

What is less well appreciated is that station-based data sets can also
exhibit large nonstationary systematic errors. These errors arise because the
networks of station observations change over time. As an example, consider
Fig. 8.2. This figure schematically shows the outcome interpolating stations.
In year 1 (top panel), we have an observation at a low elevation (near the
ocean on the left) with a relatively low precipitation value (1). We also
have a weather observation taken from a high elevation in the mountains
on the right, with a relatively high value of 3. Assuming that we interpolate
these values to a central equidistant location, we would expect that interpo-
lated value to be 2 or (11 3)/2. The middle panel shows that in the next
year, the same observations produce the same interpolated value in the cen-
tral location. Then in year 3, the observation in the mountain stops record-
ing or reporting. Our interpolation process now only finds one neighboring
station, the “1” value near the coast. The interpolated precipitation estimate
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in the central location is now “1.” Has precipitation declined by 50%, pro-
ducing a severe drought? Or have we have just witnessed the problematic
nature of nonstationary systematic errors?

Nonstationary systematic errors can be reduced by improving intersatel-
lite calibration efforts (Janowiak et al., 2001; Knapp et al., 2011; Yang
et al., 2016), reanalysis assimilation processes (Robertson et al., 2011;
Gelaro et al., 2017; Reichle et al., 2017), and by using station interpolation
strategies that work with anomalies rather than “raw” station values (Becker
et al., 2013; Schneider et al., 2017). Consider Fig. 8.2 again. If we assume
that the means of the beachside and mountainside stations are 1 and 3, and
that we interpolate anomalies and then add them to a background mean
field, then the discontinuity shown in Fig. 8.2 would disappear. The
expected value at the equidistant location would be the local mean, plus an
interpolated anomaly of 0. Our phantom drought would disappear.

The limited availability of homogeneous, rapidly updated, and reason-
ably long period of record data sets led to the development of the Climate
Hazards center InfraRed Precipitation with Stations (CHIRPS) data set
(Funk et al., 2015a). This data set blends a high-resolution climatology

Figure 8.2 Schematic diagram explaining how interpolating precipitation values can
produce nonstationary systematic errors when observation networks change over time.
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(Funk et al., 2015b) with stations and intercalibrated (Knapp et al., 2011)
thermal infrared precipitation estimates. By construction, this data set has
been designed to support drought assessments in data-sparse regions with
complex terrain. Fig. 8.3 shows a validation study from Funk et al. (2015a).

Figure 8.3 Validation results for September�November rainfall in Colombia. The
black line in panels (A) and (B) shows average national rainfall based on a very dense
set rain gauge observations provided by the Colombian meteorological agency. The
brown values are averages based on a high-quality set of interpolated gauge obser-
vations produced by the Global Precipitation Climatology Centre (GPCC). The green
and blue lines show precipitation from a satellite-only product (CHIRP) and a gauge-
satellite blended product (CHIRPS). The time series in panel (B) show rainfall values
from two reanalyses (the CFS and ECMWF) and an interpolated station data set pro-
duced by the Climate Prediction Center—the CPC Unified archive. CHIRPS, Climate
Hazards center InfraRed Precipitation with Stations; CFS, Coupled Forecast System;
ECMWF, European Center Medium range Weather and Forecasts.

126 Drought Early Warning and Forecasting



Overall, the best performing data set was the interpolated gauge data pro-
duced by the Global Precipitation Climatology Centre (GPCC), shown in
Fig. 8.3A. This is a gold standard data set based on the interpolated anoma-
lies combined with a background precipitation climatology. The latency of
this very high-quality data set, unfortunately, is too long to make it applica-
ble to most early warning applications. While not perfect, the performance
of the CHIRPS data set was fairly comparable to that of the GPCC. Note,
however, that the performance of the satellite-only CHIRP was fairly poor
in this part of the world. In Fig. 8.3B, we compare the Colombia
Meteorological Agency data (IDEAM) with values from two reanalyses: the
Coupled Forecast System (CFS) and the European Center Medium range
Weather and Forecasts (ECMWF). While these time series tend to go up
and down from year to year in good agreement with the IDEAM valida-
tion data set, they also exhibit substantial upward drifts that obscure
droughts in the latter part of the time series.

Importantly, the station-only Climate Prediction Center Unified
(CPCU)�interpolated gauge data set also exhibits a substantial downward drift
after about 2002. Note also that the year-to-year performance also appears to
degrade substantially after this point. Between 1981 and 2002 the highs and
lows in the CPCU and IDEAM track fairly well. After 2002 they bear little
resemblance. This CPCU data set is based on the interpolation of “raw” daily
station observations. We suspect that a substantial decline in the number of
gauges after 2002 led to a serious degradation of product performance.

Effective DEWS must consider the type of issues discussed here. Without
good indicator data sets, droughts will likely be misidentified or missed entirely.

8.2.1 Frequently used satellite and “combination” drought
indicators and indices
While the number of drought monitoring indicators and indices is vast,
we provide here a partial list of some of the more commonly used pro-
ducts that go beyond precipitation and temperature. To keep this book
from becoming dated too quickly, we describe the basics of several indica-
tor data set categories but avoid details describing algorithms or satellites.
Note also that essentially every indicator data set can be expressed as a
z-score, rank, anomaly, or return period. Outputs from hydrologic mod-
els, reanalyses, or RefET calculations (discussed in previous chapters) can
also be used as potential drought indicators.

Vegetation indices: Vegetation tends to absorb red light and emit infrared
radiation, so the normalized difference in the satellite-observed radiation

127Theory—indices for measuring drought severity



from these wavelengths can be used to define the Normalized Difference
Vegetation Index, NDVI5 (IR2Red/(IR1Red). The IR1Red term
in the denominator tends to cancel out changes in the overall intensity of
the incoming solar radiation. A slightly more complicated version (the
Enhanced Vegetation Index) also uses emissions from the blue wavelengths
to improve performance in heavily vegetated regions.

Microwave soil moisture estimates: Karthikeyan et al. (2017a,b) provides a
good overview of current microwave soil moisture retrievals efforts.
Satellite-based soil moisture retrievals are either based on passive (radiom-
eter) or active (radar) microwave sensors. Active sensors send radar signals
down to Earth’s surface and then record the returning microwave radia-
tion values. Passive sensors record radiometer brightness temperatures at
microwave frequencies. Both types of retrieval systems rely on the fact
that lower frequency microwave emissions from soils are influenced by
the presence of soil moisture. Since microwave emissions are less energetic
the spatial resolution of microwave imagery is generally coarser, typically
on the scale of 25 km2.

Estimates of actual evapotranspiration: There is a large and vibrant litera-
ture on the important topic of directly estimating AET from satellite data.
The Surface Energy Balance Model (SEBAL) (Bastiaanssen et al., 1998)
introduced the idea that the definition of hot and cold pixels with a
remote sensing image could be used to estimate AET values. Assuming
that the incoming radiation to both pixels is similar, this leads to the plau-
sible conclusion that hot pixels are hot because they must offset the
incoming radiation primarily through their own emission of thermal
energy. Cold pixels, on the other hand, can be colder because they are
also balancing the downwelling solar radiation via evaporation and tran-
spiration. One widely used, globally available elaboration of the SEBAL
concept is the Simplified Surface Energy Balance (SSEB) developed by
Senay et al. (2011, 2013). The SSEB approach calculates a RefET value
and then assumes that the coldest values will have AET values close to
this amount. Conceptually, this approach is quite similar to the comple-
mentary relationship discussed in this chapter.

Another broadly similar approach is the Atmosphere-Land eXchange
Inversion (ALEXI) model (Anderson et al., 1997; Anderson et al., 2011).
The ALEXI model was developed as an extension of the two-source
energy balance (TSEB) model of Norman et al. (1995). The TSEB
assumes that the observed brightness temperature of a pixel is produced
by a combination of a soil component and a vegetation component. This
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approach solves for the energy balance of each of these components, then
solves for the total net radiation, ground heat flux, sensible heat flux, and
AET terms. The ALEXI extension to the TSEB approach can be used in
conjunction with B5 km thermal infrared imagery to estimate AET at
regional scales. This technique takes unique advantage of the rapidity of
geostationary satellite observations of the land surface. Observations taken
during the morning are used in conjunction with an atmospheric bound-
ary layer model to estimate the magnitude of the sensible heat flux
(Anderson et al., 1997). Net radiation, the ground heat flux, canopy
evapotranspiration, and sensible heat flux values are then combined to
produce an overall estimate of AET. An Evaporative Stress Index (ESI)
can then be calculated by dividing the estimated AET by the estimated
RefET. Values less than 1 indicate evaporative stress.

Standardized Precipitation�Evaporation Index (SPEI): The SPEI was
developed by Vicente-Serrano et al. (2010) at the Instituto Pirenaico de
Ecologia in Zaragoza, Spain. The SPEI is similar to the SPI but also uses
estimates of RefET (often based on observed air temperatures). Parametric
distributions fit to the differences between these two terms (precipitation
minus RefET) allow the observed differences to be expressed as standard-
ized z-scores. Like the SPI, the SPEI can be applied across many different
temporal and spatial scales. The SPEI can account for the impact of tem-
perature but may overemphasize the impact of temperatures on RefET, if
a temperature-based RefET formulation is used. The SPEI, however, can
be calculated using other more physically sound RefET formulations such
as the Penman�Monteith algorithm, described in this chapter.

Crop water availability models: In general, there is a huge range in the
complexity of currently available crop models. One model that is widely
used in many developing nations is the Water Requirement Satisfaction
Index (WRSI). Originally developed by the FAO (Doorenbos and Pruitt,
1977; Frère and Popov, 1979, 1986), the WRSI provides an indicator of
crop performance by estimating the fraction of water availability over the
course of a growing season. FAO research indicates that well-calibrated
WRSI models typically exhibit linear relationships with crop yields.
Spatially explicit (gridded) versions of the WRSI are now widely used
(Verdin and Klaver, 2002).3

The calculation of the WRSI begins with a rainfall-based estimate of
the start of the growing season. From that point forward to the end of the

3 https://chc.ucsb.edu/tools/geowrsi
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growing season the model estimates a time series describing the plant
water demand curve (Fig. 8.4). This time series describes a specific quan-
tity of water (say 30 mm per 10-day time period) that the crop should
extract from the soil column to maintain ideal growth. This quantity is
quite low when the plants first emerge from the ground. The water
requirements are high during the vegetative and grain-filling periods, but
then decline rapidly. The water requirement estimates are based on time-
varying crop coefficients multiplied by RefET. Increasing RefET increases
the crops’ water demands.

The offsetting term in the WRSI calculation is an estimate of the
AET flux that the crops draw from the soil. The time-varying AET term
is a function of the plant available for soil moisture and the crop water
demand (WR). If the available soil moisture meets or exceeds the crop
water demand, the AET will equal the crop water demand. The combi-
nation of AET, rainfall, and the water-holding capacity of the soil is used
to provide a running estimate of the total available soil moisture.
Running totals of crop AET and WR are calculated, and the WRSI at
time t is provided by the following relationship:

WRSIt 5 1003

Pt

i51
AETt

Pt

i51
WRt

where t5 1 is assumed to be the beginning of the season. If AET always
matches WR, the WRSI value will be 100. WRSI values of B50 indi-
cate severe crop water stress. Caution should be used when analyzing
WRSI values early in the season. A good start to the season (with WRSI

Figure 8.4 Seasonal progression of the WRSI crop water requirement. WRSI, Water
Requirement Satisfaction Index.
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values near 100) may not be very indicative of late-season performance,
because much of the crop water demand will arise later in the season.

The Palmer Drought Severity Index (Palmer, 1965; Alley, 1984) is
another widely used index that combines precipitation and RefET with
assumptions about soil water capacity to estimate plant water availability.
At the complex end of the spectrum, there are many sophisticated crop
models such as Decision Support System for Agrotechnology Transfer
(DSSAT) and the Agricultural Production Systems sIMulator (APSIM).
While these models typically require substantial calibration and detailed
weather information, they can provide very accurate information about
crop yields. Their complexity, however, tends to limit their utility as a
general drought indicator.

8.3 Per capita water availability

The Falkenmark per capita water availability index, discussed in
Chapter 6, Tools of the Trade 4—Mapping Exposure and Vulnerability,
provides one example of an index that provides a quantitative (if rather
simplistic) assessment of water supply compared to per capita water
demand. This index can help translate an absolute quantity, say the total
runoff from a river basin, into an index that may be more closely tied to
drought impacts. Such an index will have an inherent spatial scale (a basin)
but can also be examined at many different temporal scales. For example,
we might be interested in the Falkenmark Index values during the months
or weeks of the year with the lowest runoff. For some social and environ-
mental systems, even a relatively brief loss of available water may be terri-
bly disruptive. Such crises may also be accompanied by a rapid
deterioration of water quality, potentially leading to outbreaks of diseases
such as acute watery diarrhea or even cholera. On the other hand, long,
persistent multiyear dryness can sap water storage reserves, creating serious
problems even for nations with deep financial reserves and sophisticated
water-management capacities.

8.4 Summary and discussion

As this chapter has illustrated, the topic of drought indicators and drought
indices is extensive. Even if we just isolate a signal variable, such as precip-
itation, there are a myriad of ways to calculate and present a drought
index. Practitioners should consider drought intensities both in the terms
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of standardized values, ranks, and/or percentiles, and in terms of the actual
quantities being examined. At the end of the day, effective DEWS will
need to target specific impacts. Such targeting can help select specific indi-
cators and design effective triggers. The choice of spatial and temporal
units of aggregation is important. For agricultural and rangeland monitor-
ing purposes the timing of the selected analyses will be guided by the
typical seasonal progression of precipitation and vegetative water demand.
Agricultural and rangeland monitoring, however, do differ substantially,
because crop outcomes are linked to their very specific phenology of
grain-producing crops. Atypical late-season rainfall can often produce
rapid improvements in rangeland conditions. For most rainfed crops,
bountiful late-season rainfall is much less likely to overcome the negative
impacts associated with a poor start to the season, or serious water deficits
during the vegetative and grain-filling stages of crop growth. Hydrologic
drought tends to respond to lower frequency water deficits and these
responses can be very complex based on the specific region’s water stor-
age, transport, and use characteristics. Chapter 12, Practice—Actionable
Information and Decision-Making Networks, will revisit this topic in an
applied setting.
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CHAPTER 9

Sources of drought early warning
skill, staged prediction systems,
and an example for Somalia

In 1948 the mathematician, philosopher, and founder of information the-
ory Norbert Wiener (1894�1964) wrote a brilliant collection of essays,
Cybernetics: or Control and Communication in the Animal and the Machine.
Wiener originated the concept of cybernetics, a field of information the-
ory focused on the development of intelligent behavior arising through
feedbacks. Whether arising across communications with newfangled com-
puters such as the electronic numerical integrator and computer (ENIAC)
or across burgeoning global telephone transmission lines, transmission
errors threatened the very core of the mid-20th century computation and
communication. Defeating transmission errors such as droughts can be
very difficult. Typically, most data are good, and we just want to find the
bad bits. Just as typically, most weather is normal, and we want to identify
the droughts that arise in a few isolated locations and times. To address
this problem of error detection, Wiener introduces ideas that relate to the
modern cyber-security concept of defense-in-depth (DiD), in which a
series of defensive mechanisms are layered in order to protect valuable
data or information (Fig. 9.1, left). DiD is a multilayered approach with
intentional redundancies. Just like a pitchfork-bearing prole outside a castle,
attackers are faced with consecutive lines of defense—the city walls, then
the moat, then the ramparts, and then finally, the central keep.

Applying the DiD approach to drought early warning systems
(DEWS) (Fig. 9.1, right) can result in very effective and timely early
warning. Multiple distinct data sources provide multiple opportunities to
catch potential disasters. Multiple opportunities are provided to communi-
cate risk. A nuanced staged approach builds on the strengths of long-
range forecasts but does not rely too much on these less certain sources of
information. A DiD approach to DEWS development takes advantage of
the same logic that signal processor pioneers such as Wiener applied to
error detection—redundancy in a DEWS is a good thing. Assume that
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you have a filter A that can detect and remove 50% of the error in a sig-
nal. Then, let us say that filter B can also remove 50% of the error. Does
applying A and then B remove 75% of the error? If A and B detect and
remove the same errors, no. A would remove 50% of the errors and B
would detect nothing. But if A and B are independent detection systems,
A would detect half of the original errors, and B would detect half of the
remaining errors—reducing the overall error rate to just 25% of the origi-
nal. If additional independent 50% filtering filters C and D are then
applied, the fraction of the original errors would drop to 12.3% and 6.2%.

Such logic underlies the phased sequential convergence of evidence
(PSCOE) approach displayed in Fig. 9.1. Multiple independent sources of
information are used, providing multiple opportunities to spot crises. One
clear advantage of a PSCOE approach is that it provides support for a
staged system of alerts that takes advantage of the unique capabilities of
multiple sources of information. Drought early warning skill arises from
the slow variation of ocean temperatures, predictable variations in

Figure 9.1 A defense-in-depth approach to designing drought early warning sys-
tems. Sequential sources of climate, weather, and land surface information are used
in a way that provides both redundancy and optimal increasingly impact-specific
information.
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weather, and persistent anomalies in vegetation and soil moisture
(Fig. 9.2).

9.1 The ocean as a source of skill

Let us begin with the ocean. The global oceans vary at a much slower
tempo than the atmosphere, because the ocean is much denser than air. It
takes far more energy to heat or move a cubic meter of water than a
cubic meter of atmosphere. At the surface of the ocean a cubic meter of
water weighs about 1017 kg. At 15°C and sea level the density of air is
1.2 kg. The ocean is 1000 times denser. The specific heat capacity of the
ocean [3850 J (kg °C)21] and atmosphere [1158 J (kg °C)21] describes
how much energy would be required to heat these fluids by 1°C. The
specific heat capacity of water (H2O) is caused by hydrogen bonds
between water molecules. It takes about 10173 3850� 3.9 million Joules
to heat 1 m3 of sea water by 1°C. It takes 1.23 1158� 1.4 thousand
Joules to heat the same volume of air by 1°C. It takes about 2000 times
the amount of energy to heat water as it does air. The oceans, therefore,
possess a large “thermal inertia.” Since it takes a lot of energy to change
ocean temperatures, ocean temperature anomalies tend to persist from
week to week and month to month. This persistence, combined with our
ability to model some important types of ocean�atmosphere interactions,
such as those related to the El Niño�Southern Oscillation (ENSO), pro-
vides the foundation for statistical and dynamic climate forecasts based on
observed ocean conditions. Dynamic climate forecast models are discussed
in Chapter 4, Tools of the Trade 1—Weather and Climate Forecasts.

Climate forecasts typically advance on monthly timescales and provide
the greatest forecast lead times. These forecasts, however, also come with
the highest levels of uncertainty and provide information at coarse spatial
scales. Coupled ocean�atmosphere models may also have trouble repre-
senting local weather mechanisms. They tend to perform better in some
regions and not so well in others. Multimodel ensembles can also some-
times exhibit spurious certainty. For example, the ocean�atmosphere
feedbacks leading to the development of El Niño events are very difficult
to model, and current climate models tend to overpredict the certainty of
El Niño formation. If 90% of the model simulations predict a strong El
Niño, or rainfall deficits in Southern Uganda in June, 6 months in the
future, this may overrepresent the true certainty of these assessments.
Climate processes such as the ENSO system typically involve coupled
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Figure 9.2 Effective DEWS utilize multiple sources of predictive skill. Skill arises from the slow variation of ocean temperatures,
predictable variations in weather, and persistent anomalies in vegetation and soil moisture. DEWS, Drought early warning systems.



ocean�atmosphere feedbacks that can be highly nonlinear and difficult to
model (Ferrett and Collins, 2016). This can lead to a tendency for the fre-
quency of El Niño to be overpredicted. Forecast certainties should be
based on comparisons with historical data, and such assessments can typi-
cally be accessed on sites hosting multimodel forecast ensembles, such as
the site maintained for the North American Multi-Model Ensemble
(NMME).1 In general, skills for precipitation and temperature forecasts
will be much higher at shorter lead times and over the tropical Pacific
Ocean, where ENSO dominates seasonal variability (Fig. 9.3).

In addition to observed and predicted sea surface temperature (SST)
conditions, experienced climate analysts pay close attention to how the
tropical atmospheric circulation is responding to a given set of SST anom-
alies. Atmospheric responses depend on the overall disposition of ocean
temperatures, not just the local SST anomalies in a fixed region, such as
the Niño3.4 box (5°S2 5°N, 170°E2 150°W) often used to depict El
Niños. On the other hand, when strong El Niño and La Niña-like SST
gradients are accompanied by vigorous anomalies in Indo-Pacific winds,
atmospheric water vapor, and precipitation, an extreme ENSO state
should provide opportunities for prediction. In a warming world, such
extreme states induce exceptionally warm SST anomalies, which can be
related to severe droughts in teleconnected regions. For example, the
2015�16 El Niño and the following 2016�17 La Niña produced a series

Figure 9.3 NMME forecast skill maps, based on September forecasts for
October�November�December (left) and February�March�April (right). One hun-
dred percent indicates perfect forecast skill. NMME, North American Multi-Model
Ensemble. Obtained from https://www.cpc.ncep.noaa.gov/products/NMME/ on
September 8, 2019.

1 https://www.cpc.ncep.noaa.gov/products/NMME/
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of droughts that helped propel more than 50 million sub-Saharan Africans
into severe food insecurity (Funk et al., 2018). First, a climate change-
enhanced El Niño contributed to severe droughts in Ethiopia and south-
ern Africa (Funk et al., 2016, 2017). Then human-induced warming of
the Western Pacific contributed to severe back-to-back east African
droughts in October�December of 2016 and March-to-May of 2017
(Funk et al., 2019a,b). While very damaging, from a climate hazards’ per-
spective, these extreme SST states and associated impacts can be viewed as
opportunities for prediction (Funk et al., 2019a,b).

9.2 Skill from persistent atmospheric conditions

The next source of predictive skill comes from persistent atmospheric
conditions. While there are intrinsic chaotic aspects to atmospheric circu-
lations, there is also considerable predictability on 1- to 14-day timescales,
and efforts are being made to extend such weather forecasts to seasonal-
to-subseasonal predictions on the 15- to 30-day timeframe. While limited
in lead time, weather forecasts often have quite high levels of skill.
Fig. 9.4 shows one such assessment for Africa. This figure shows the cor-
relation between 10-day precipitation forecasts from Global Ensemble
Forecast System2 (GEFS) and 10-day observations of rainfall from the
CHIRPS2.1 data set.3 The GEFS forecasts are based on the ensemble
average. While a detailed discussion of these results is beyond the scope of
this chapter, we can note that rainfall correlations tend to be higher in
places that are in season. Correlations are also a little higher, in general, in
April than in October.

When combined with near real-time precipitation observations,
weather forecasts can be very powerful tools for rapidly identifying mid-
season droughts. Precipitation deficits tend to be leading indicators of soil
moisture deficits, crop stress, and vegetation deficits. Combining observa-
tions and weather predictions near the middle of a growing season can
provide timely advance warning. Furthermore, weather and climate fore-
casts can be used as inputs to hydrologic and crop models, providing a
means of assimilating multiple sources of information to assess likely
hydrological, agricultural, and pastoral impacts. The topic of integrating

2 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-
forecast-system-gefs

3 https://www.chc.ucsb.edu/data/chirps
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Figure 9.4 Maps of correlations between 10-day GEFS forecasts and observed CHIRPS2.0 precipitation for the first 10 days of October
(left) and April (right). CHIRPS, Climate Hazards center InfraRed Precipitation with Stations; GEFS, Global Ensemble Forecast System.



observations and forecasts is explored in more depth in Chapter 11,
Practice—Integrating Observations and Climate Forecasts.

9.3 Predictive skill from the land surface

The land surface provides a third source of predictive skill. While some fore-
cast skill can arise through complex interactions between climate and land
surface conditions, we focus here on the more straightforward application of
lagged relationships between moisture supply, land surface response, and the
associated drought impacts. The first precedes the second, which precedes the
third, creating opportunities for effective prediction of impacts. The utiliza-
tion of such lagged relationships can provide some of the most effective tools
in a drought analyst’s toolkit. In general, water balance deficits, arising
through below-normal precipitation and above-normal evapotranspiration,
result in lagged (B1 week to 1 month) deficits in soil moisture. Deficits in
soil moisture can decrease evapotranspiration, causing land surface and 2 m
air temperatures to increase, because the energy associated with the decreased
evapotranspiration must be balanced by increases in the land surface emission
temperatures and sensible heat fluxes. Dry soils and hot conditions during the
first two-thirds of a growing season will inhibit plants’ translation of CO2

into carbohydrates and sugars by means of photosynthesis. For grain crops,
this usually occurs first in a vegetative growth phase in which crops put on
green leafy biomass (further facilitating photosynthesis) and a later “grain-fill-
ing” phase in which energy (sugars and carbohydrates) are channeled into the
production of germ-bearing grains, that is, the part of corn, wheat, rice, and
sorghum that we eat. Vegetation stress and deficits in plant biomass produc-
tion tend to lag soil moisture deficits and temperature extremes, which, in
turn, tend to lag water supply indicators (reduced precipitation and enhanced
reference evapotranspiration values). Deficits in soil moisture and crop condi-
tions can be simulated with hydrologic and crop models. Vegetation stress
and deficit in plant biomass can be observed from space using vegetation
indices. All three of these indicators (hydrologic simulations, crop simulations,
and satellite-observed vegetation conditions) will tend to lead to agricultural
outcomes, realized as grain harvests several months after the peak of the sea-
son. Thus all the sources of information described here provide effective pre-
dictive skill vis-à-vis agricultural crop production.

We can help contextualize this progression by discussing a specific
country—Zimbabwe (Fig. 9.5). Like most regions in southern Africa,
Zimbabwe experiences a single rainy season associated with monsoonal
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Figure 9.5 Seasonal progression of Zimbabwe food production and consumption. Courtesy: From http://fews.net/southern-africa/zim-
babwe on September 9, 2019.

http://fews.net/southern-africa/zimbabwe
http://fews.net/southern-africa/zimbabwe


rains in austral summer. Rains tend to begin in earnest in November,
peak in January, and diminish by March. Harvests typically occur between
April and July. Ironically, hunger tends to peak around the time that the
rains begin, as last year’s food stores are diminished. The lean rainy seasons
are contemporaneous (Fig. 9.5). Poor harvests extend the lean period, cre-
ating dangerous disruptions to lives and livelihoods. Evaluations of
Zimbabwe crop statistics, precipitation, soil moisture values, and vegeta-
tion indices suggest, roughly, the following sensitivities. This sequence is
common to many rainfed agricultural regions. Rainfall acts as a leading
drought indicator, and Zimbabwe crop production is most closely related
to rainfall in December and January (Funk and Budde, 2009), when many
maize farms enter the grain-filling stage. Farmers tend to plant so as to
harmonize crop water needs with the typical peak periods of precipitation.
February soil moisture values appear to be strongly related to crop pro-
duction, and finally, March�April vegetation index values are strong indi-
cators of agricultural crop production. Since all three of these information
sources (precipitation, soil moisture, and vegetation indices) lead the
April�July harvest, all three sources can provide skillful forecasts. As illus-
trated later, combinations of mid-season precipitation observations, down-
scaled precipitation forecasts, and observations of Normalized Difference
Vegetation Indices (NDVIs) can be combined in powerful ways to pro-
vide very effective mid-season alerts. In general, as one moves deeper into
a given season, both the level of uncertainty and spatial specificity of the
drought warning indicators increase. Staged and nuanced response systems
can take advantage of this increasing accuracy and specificity by develop-
ing and implementing increasingly specific and targeted responses.

It should be noted, however, that the exposure and vulnerability of a
given household, community, nation, or regional food economy may
vary substantially from season to season. These prior conditions may
amplify or diminish the impact of a specific seasonal drought. Examples
can range from global to local. For example, the global food price spikes
of 2008�114 increased the fragility of millions of households all over the
world (Brown et al., 2015). Conflict in places such as Syria, South Sudan,
and Yemen can greatly exacerbate the influence of poor agricultural out-
comes. While such influences can travel through myriad pathways to
erode resilience, there is one common prior influence that DEWS are
well situated to recognize: the negative influence of past droughts. Such

4 http://www.fao.org/worldfoodsituation/foodpricesindex/en/
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influences may be most easily recognized in bimodal rainfall areas.
Receiving rains twice a year, such areas are prone to damaging back-to-
back droughts. Unimodal precipitation regimes can also be negatively
impacted by poor outcomes in prior years. Consecutive droughts can
drain aquifers, reservoirs, water holes, household savings, and government
assets. When analyzing potential outcomes, drought analysts should con-
sider the potential impacts of prior hydrologic and agroclimatic shocks.

9.4 Staged opportunities for prediction support defense-in-
depth

A recurring theme throughout this chapter and this book is that the most
effective drought early warning typically involves staged alerts and action-
able decision support services. Such staged systems take advantage of mul-
tiple sources of information, providing multiple opportunities to catch a
crisis. Furthermore, staged alerts provide response agencies and disaster
risk reduction specialists with adequate time to put contingency plans in
place (Choularton, 2007) and provide adequate long-term food security
outlooks (Magadzire et al., 2017). To return to our DiD castle metaphor,
we can imagine a royal counselor providing a series of pronouncements
announcing that a rabble of pitchfork-waving invaders has formed beyond
the postern gate . . . passed across the moat . . . breached the walls . . . and
finally entered the central keep. These successive and increasingly precise
alerts provide governments and humanitarian agencies adequate time to
respond.

Here, with reference to Somalia and a sequence of alerts provided in
2016 and 2017 by the authors, we sketch potential staged opportunities
for prediction (Fig. 9.6). These staged opportunities begin with potential
long-lead climate forecasts (1), which are only available for regions with
strong teleconnections in time periods when strong climate forcing is
likely or underway. The next window occurs as the rainy season com-
mences (2). At this stage the thermal inertia and persistence of the ocean
create a fairly high degree of certainty surrounding the like mid-season
climate conditions. By mid-season (3) the drought analyst has a rapidly
increasing arsenal of information. Precipitation conditions in the first-third
to second-third of the season provide very valuable insights into the likely
seasonal outcomes. Weather forecast models tend to perform well and
offer additional insights into likely mid-season moisture supplies. Soil
moisture and vegetation have also begun to respond to the water
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availability and offer additional metrics of seasonal performance. Finally, at
the close of the season, soil moisture, runoff, and vegetation provide
detailed impact-relevant evidence of aridity, as well as indicators of yield,
prices, food availability, and food access.

9.4.1 Stage 1: long-lead climate forecast
By definition, most of the time, oceanic SST conditions are characterized
as normal. Occasionally, however, climate extremes arise, and these
extremes are typically associated with climate modes such as the ENSO
(Ropelewski and Halpert, 1987) and the Indian Ocean Dipole (Saji et al.,
1999; Saji and Yamagata, 2003). La Niña ENSO phases, associated with
eastern equatorial Pacific Ocean conditions, are often associated with dry
conditions over Eastern Africa. Negative Indian Ocean dipole conditions,
which are associated with cool SSTs near coastal East Africa and warmer
than normal ocean conditions in the eastern equatorial Indian Ocean, are
also associated with dry conditions over eastern East Africa.

La Niña events often follow moderate-to-strong El Niño events, cre-
ating an opportunity for El Niño-related droughts in places such as
Ethiopia and southern Africa, followed by sequential La Niña-related
back-to-back droughts in East Africa in October�December and then
March�May (Funk et al., 2018). These repetitive back-to-back droughts
can be devastating to food insecure farmers and pastoralists in Somalia.

Figure 9.6 Staged opportunities for prediction pool sources of predictive skill and
offer defense-in-depth. Note that practice historical data would be required at each
stage to develop effective warning indicators.
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In May 2016, El Niño conditions had rapidly diminished, and accord-
ing to the National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center, there was a 75% chance that a moderate-to-
strong La Niña would develop by the fall of 2016. Prior Famine Early
Warning Systems Network (FEWS NET), research indicated that if such
an event occurred, climate change-related warming in the Western Pacific
was likely to enhance the drought impacts of this La Niña. The FEWS
NET science team held a colloquium in Washington, DC in mid-May,
presenting composites of recent moderate-to-strong La Niñas (Fig. 9.7).
What these slides emphasized was that if a moderate-to-strong La Niña
was to develop, such conditions were likely to produce dry conditions
during the following October�December, December�February, and
March�June rainy seasons—constituting a major threat to eastern East
Africa, in general, and Somalia, in particular, because the country is so
arid, food insecure and dependent on pastoral livelihoods.

It should be noted that opportunities for long-lead forecasts are infre-
quent and typically related to ENSO-related SST extremes. Drought analysts
should be on the lookout for such forcing scenarios. La Niñas, interacting
with human-induced warming in the Western Pacific, may induce droughts
across East Africa and significant portions of the northern hemisphere (Hoell
et al., 2013, 2014). Moderate-to-strong El Niño drought impacts can affect
Central America, Amazonia, Ethiopia, southern Africa, India, Southeast Asia,
as well as northern Australia, and the Maritime Continent.5

Figure 9.7 Extremely long-lead climate outlook example. Courtesy: Based on analysis
presented to USAID on May 19, 2016 showing standardized precipitation anomalies, if a
moderate-to-strong La Nina formed.

5 These types of composites can be created using the GeoCLIM tool https://www.chc.
ucsb.edu/tools/geoclim/.
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9.4.2 Stage 2: short-lead climate forecasts
Short-lead climate forecasts are plausible for many regions of the world,
due to the persistence on SSTs on 1- to 3-month timescales. Ocean con-
ditions observed today are likely to be similar to conditions in a month or
two. Dynamic climate forecasts, discussed in Chapter 4, Tools of the
Trade 1—Weather and Climate Forecasts, provide an extremely useful
tool for rapidly identifying likely precipitation outcomes everywhere in
the globe. Care should be taken, however, to carefully assess the skill of
these forecasts. Statistical forecasts, tailored to a given region and season,
can sometimes outperform dynamic predictions. These statistical forecasts,
however, should also be guided by an understanding of the relevant cli-
mate dynamics that is often informed by climate simulations. Another
advantage of statistical forecasts is that they can be fairly easily implemen-
ted and are transparent in their assumptions. However, a downside of sta-
tistical forecasts is that they, unlike dynamic forecasts, have difficulty
interpreting novel climate conditions.

Here, we produce an example very similar to analysis provided for an
outlook on October 19, 2016 by the Climate Hazards Center (CHC).6

As context, consider Fig. 9.8, which shows a long time series of Somalia
March�May and October�December precipitation, expressed as
Standardized Precipitation Index (SPI) values (McKee et al., 1993; Husak

Figure 9.8 March�May (circles) and October�December (squares) Somalia SPI
values. Values less than 20.7 SPI drawn in red. SPI, Standardized Precipitation Index.

6 http://blog.chc.ucsb.edu/?p5 10
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et al., 2007). These long time series are derived by combining 1900�80
Centennial Trends gridded station data (Funk et al., 2015a) with
CHIRPS2.0 blended satellite-gauge data (Funk et al., 2015b). By con-
struction, these data sets are built around the same climatology (Funk
et al., 2015c), and well correlated for their period of overlap (r5 0.87
MAM, 0.97 OND). A plot of the MAM and OND SPI values is shown
in Fig. 9.8. SPI values of less than 20.7 are plotted with red outlines.

Along with eastern Ethiopia and Central-Eastern Kenya the Somalia
March�May rains have declined substantially, likely due to human-
induced warming in the Western Pacific Ocean (Funk et al., 2018, 2019a,
b). Since 1999, 11 out of 21 March�May rainy seasons have been below
normal (SPI. 2 0.7). October�December rains do not exhibit a decline,
probably because of warming in the Western Indian Ocean (Liebmann
et al., 2014) and different upper level atmospheric responses over the
Indo-Pacific warm pool (Funk et al., 2018). The interaction of climate
change, manifested as exceptionally warm SSTs in the Indo-Pacific and
naturally occurring La Niña conditions, can trigger frequent multiseason
drought events. These events have also tended to follow strong El Niño
events (Funk et al., 2018). The 1997/1998 El Niño transitioned into a
strong La Niña in late 1998. The 1998 October�December, 1999
March�May, 2000 March�May, and 2001 March�May seasons were
very dry. In 2006 a moderate El Niño was followed by La Niña conditions
and dry March�May seasons in 2008 and 2009. In 2009�10 a moderate-
to-strong El Niño transitioned into strong La Niña conditions, and the
October�December 2010 and March�May rains were exceptionally dry.
In 2016 a strong El Niño transitioned into a moderate La Niña, accompa-
nied by exceptionally warm west Pacific SSTs. The October�December
2016 and March�May 2017 seasons were also very dry, compounding
impacts from an unexpectedly dry 2016 March�May season.

While many factors impact East African rains, research has suggested
that the persistence of west Pacific SSTs and La Niña-like SST gradients
over the October�December and March�May rainy season can cause
back-to-back droughts (Hoell and Funk, 2013). Designing early warning
systems that can effectively capture these risks may help manage these
repetitive climate shocks. It should be recognized, however, that there
will be “surprise” droughts, such as the poor 2016 and 2019 March�May
rainy seasons, that will probably not be predicted by most current statisti-
cal or dynamic models. A DiD early warning approach, therefore, pro-
vides multiple opportunities to identify emerging drought crises, greatly
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increasing the overall chance of success in projecting drought severity and
impact throughout the season.

To develop a short-lead Somalia October�December rainfall forecast,7

we begin examining the correlation between 1996 and 2018 September
NOAA Extended Reanalysis SST (Huang et al., 2017) and Climate
Hazards center InfraRed Precipitation with Stations (CHIRPS)
October�December Somalia SPI. Fig. 9.9 shows a map with these corre-
lations. A relatively short time period was chosen because recent research
has indicated substantial nonstationarities in East Africa teleconnections
(Nicholson, 2015, 2017). What we see in Fig. 9.9 is reassuring; we find a
very strong negative teleconnection between SSTs in the Indo-Pacific
warm pool and moderately negative correlations between the Western
Indian Ocean and eastern equatorial Pacific. These patterns are consistent
with prior research emphasizing ENSO and the Indian Ocean Dipole as
key drivers of interannual variability. SSTs averaged over the warm pool
region shown in Fig. 9.9 (90°E2 160°E, 15°S2 10°N) are very strongly
anticorrelated with Somalia rains (r520.79). Eastern Pacific (180°
W2 120°W, 5°S2 5°N) and Western Indian Ocean (45°E2 55°E, 5°
S2 5°N) have positive correlations of 0.60 and 0.56. The warm pool
exhibits anticorrelations with the east Pacific SSTs (R520.66) and
Western Indian Ocean (R520.41). To develop a predictive model,
these three SST time series were standardized, and used in a multivariate
regression. The three slope coefficients from this model were 20.78,
0.00, and 0.32, indicating that the Warm Pool and Western Indian Ocean
alone were the best predictors. The Warm Pool is the region of very
warm waters surrounding Indonesia. This does not imply that the east
Pacific SST (and implicitly ENSO) does not matter, but rather that the
Warm Pool time series alone appears to effectively capture this informa-
tion. The Western Indian Ocean�Warm Pool SST gradient will be asso-
ciated with modulations in the Walker Circulation and low-level winds
over the Indian Ocean (Hastenrath et al., 2010).

Take-one-away cross-validation was then used to assess out-of-sample
forecast accuracy. This process involved holding out each year’s data, fit-
ting the model with the rest of the data, and then using the resulting
regression coefficients to estimate the excluded year’s Somalia rainfall
value. The standard deviation of the year-to-year variations in the slope

7 This analysis could be replicated using the GeoCOF tool https://www.chc.ucsb.edu/
tools/geocof/.
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Figure 9.9 Correlation between 1996 and 2018 Somalia October�December CHIRPS SPI and September NOAA Extended Reconstruction
SST. Green rectangles delineate regions used in statistical forecast models. CHIRPS, Climate Hazards center InfraRed Precipitation with
Stations; NOAA, National Oceanic and Atmospheric Administration; SPI, Standardized Precipitation Index; SST, sea surface temperature.



coefficients was very small (B0.03Z/Z), indicating robust results. The
cross-validated correlation remains high (0.78), with an overall standard
error of 0.73Z. The model captures four of the five driest rainy seasons
fairly well (1996, 1998, 2010, 2016) but misses the dry 2005 season
(Fig. 9.10, left). The 2005 season was driven by an extreme Indian Ocean
Dipole event, and not well captured by the model used here. The model,
over the training period, did not produce any false alarms. While this does
not preclude such an outcome in the future, the results presented here
indicate that a simple robust model can perform quite well.

We next briefly evaluate the skill of dynamic coupled ocean�atmo-
sphere climate forecasts based on September forecasts of
October�December Somalia rains. The forecasts used here are drawn
from the NMME. The simulations were downloaded from the
International Research Institute. The model performance was very strong,
with a correlation of 0.8 (Fig. 9.10, right). The models also did a good
job of predicting the 2005 event, resulting in good detection performance
for all four of the driest recent events.

9.4.3 Stage 3: mid-season climate/weather forecasts
We next provide an example of mid-season assessments that combine
CHIRPS2.0 satellite-gauge rainfall estimates, CHIRPS-compatible

Figure 9.10 Left—scatterplot of cross-validated regression-based Somalia rainfall
prediction based on warm pool and Western Indian Ocean SSTs. Right—scatterplot
of climate model predictions and observed Somalia rainfall. Prediction based on
ensemble average from the NMME. The cross-validated R2 value of the statistical
model (left panel) was 0.63. “X”s have been added to identify the five driest seasons
in the period evaluated. NMME, North American Multi-Model Ensemble; SST, sea sur-
face temperature.
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downscaled GEFS precipitation forecasts, and observed vegetation condi-
tions, represented here by eMODIS NDVI images. Two scenarios are
evaluated. The first is based on October CHIRPS and NDVI data, along
with the first dekad of November CHIRPS�GEFS precipitation forecasts.
The two rainfall totals (observed and forecast) are combined (totaled).
The second scenario is similar but uses October and November observa-
tions of CHIRPS and NDVI, and CHIRPS�GEFS forecasts for the first
10 days of December. Both sets of data are compared with
October�December NDVI. This example is carried out at a national
scale, but subnational results’ applications could be developed in a straight-
forward manner.

The scatterplot in the left panel of Fig. 9.11 shows cross-validated
regression results based on (1) October CHIRPS1 dekad one of
November CHIRPS�GEFS, (2) October NDVI, and (3) both predictor
time series. Despite the early date of the analysis, high cross-validated cor-
relation skills are identified (0.77, 0.70, 0.84, respectively). The two poor-
est seasons (2010 and 2015) are identified surprisingly well. The next two
poorest seasons (2017 and 2018) are also identified well. It is quite con-
cerning that 2016, 2017, and 2018 had such low October�December
NDVI values. This behavior, however, seems to have been predicted rea-
sonably well by the model.

Advancing 1 month, and carrying out a similar analysis (Fig. 9.11,
right), we see an increase in forecast accuracy. The rainfall, NDVI, and
combined rainfall and NDVI models had cross-validated correlation values
of 0.78, 0.94, and 0.96. The strong performance of the just-NDVI model
suggests that at a national scale, the NDVI signal has largely become fixed
by early December. The relative lack of improvement in the forecast skill
associated with the just-rainfall forecast may indicate that other factors are
also helping to drive NDVI variations, that is, variations in air tempera-
tures, reference ET, vapor pressure deficits, et cetera. While there is a sub-
stantial improvement in performance between the October and October-
plus-November models, much of this improvement occurs in the upper
right quadrant of this scatterplot. Behavior in November helps quantify
the differences between mediocre and above-normal seasons.

Overall, these results emphasize the high degree of predictability
associated with both short-lag climate forecasts (Fig. 9.10) and midsea-
son monitoring (Fig. 9.11). By early December, poor national-level
outcomes can be assessed with a high degree of certainty, and even 1
month into the rainy season we find surprisingly high detectability of
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Figure 9.11 Left—scatterplot of October�December Somalia NDVI based on observed October rainfall and NDVI and predicted rainfall
for the first dekad of November. Cyan circles depict forecasts of observed NDVI based on precipitation. Pink boxes represent forecasts
of future NDVI based on early-season NDVI observations. Finally, yellow stars present forecasts based on both precipitation and NDVI.
Right—same but for October�November observations and the first dekad of December CHIRPS�GEFS weather forecasts. CHIRPS,
Climate Hazards center InfraRed Precipitation with Stations; GEFS, Global Ensemble Forecast System; NDVI, Normalized Difference
Vegetation Index.



poor “short” rainy season outcomes (Fig. 9.11, left). Both statistical
and dynamic models appear to capture the associated rainfall deficits
quite well (Fig. 9.10).

9.4.4 Stage 4: late-season impact assessments
At the close of a growing season the early warning analyst has the most avail-
able information. Even after the rains have stopped, however, there is still a
great deal of opportunity for prediction, since the impact of poor harvests,
pasture conditions, and terrestrial water supplies are likely to be felt for
months to come. At this stage the analysis of high-resolution satellite imagery
can be very powerful. Using this data to monitor large regions can be pro-
hibitive, but once problem regions have been identified, high-resolution data
can be used to confirm and refine impact assessments. At this stage, of course,
field assessments are also a critical source of information. We do not carry out
a detailed example here, but rather refer to a 2016 analysis carried out by
scientists at the European Commission’s Joint Research Center (JRC) in sup-
port of an international joint alert8 underscoring potential famine conditions
in Somalia. This statement reflected a shared view of current conditions and
the likely evolution of the situation in Somalia by major actors involved in
global food security monitoring and early warning: The European
Commission’s JRC, the FEWS NET, the Food and Agriculture
Organization of the United Nations, and the United Nations World Food
Programme. Food security assessments indicated that more than 2.9 million
people were facing crisis and emergency food security conditions until June
of 2017. Some 363,000 children under 5 were acutely malnourished.

To underscore the very poor crop production prospects for the
October�December, collaborators from the JRC used high-resolution satel-
lite imagery to provide detailed maps of fields, which have either not been
planted or where crops have failed in the most productive areas in the Lower
Shabelle river basin (Reproduced as Fig. 9.12). As can be seen in Fig. 9.12,
in 2016 only irrigated fields in the proximity of the Lower Shabelle river
show green vegetation (green areas) at the end of the deyr season, while more
peripheral irrigated areas and rainfed areas to the north and to the south are
completely dry (orange areas). In early 2017, this analysis helped reinforce
January harvest estimates indicating extremely low levels of crop production
in Southern and Central Somalia (75% below 5-year average).

8 https://documents.wfp.org/stellent/groups/public/documents/ena/wfp290554.pdf
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Figure 9.12 Vegetation greenness of the main agricultural areas of Southern Somalia along the Shabelle River in November 2016. The
orange areas are dry fields that are normally at the peak of the crop cycle in this season. The green belt (left) in the middle corresponds
to irrigated fields next to the Shabelle River. Less than half of the irrigated area (purple polygon) is actively producing in 2016. To the
right the expanded views of an irrigated area show that, except for some larger fields next to the river, most plots are dry. The same
area is also shown for a normal season (2013). Courtesy: JRC, with Landsat eight data processed in Google Earth Engine, land cover provided
by the FAO’s Somalia Water and Land Information Management (SWALIM) project.



9.5 Summary: staged strategies for effective early warning

We have now worked through examples of all four of the staged oppor-
tunities for prediction shown schematically in Fig. 9.6. When the La Niña
was first predicted in late spring of 2016, long-lead outlooks were used to
alert decision-makers to potential problems (Fig. 9.7). After the La Niña
had commenced and just before the October�December season began,
September ocean conditions provide skillful sources of prediction
(Fig. 9.11). Advancing just 1 month, we find that rainfall and satellite
observations provide a surprising level of skill that increases even more the
following month (Fig. 9.11). Finally, after the season, high-resolution sat-
ellite data provide a detailed basis for examining agricultural conditions
(Fig. 9.12). We briefly conclude with yet one more long-lead assessment,
based on an assessment by the CHC9 carried out in support of the Joint

Figure 9.13 Time series of observed 1981�2016 Gu rains, together with a statistical
forecast for 2017. The statistical forecast was based on a cross-validated regression
model. The black line and circles denote the 2017 forecast and 80% confidence inter-
vals. Courtesy: WFP (2017) Persistent drought in Somalia leads to major food security
crisis, Multi-Agency Joint Alert, https://documents.wfp.org/stellent/groups/public/docu-
ments/ena/wfp290554.pdf.

9 http://blog.chc.ucsb.edu/?p5 148
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Alert (see footnote 7). This statistical forecast for the 2017 March�May
rains, based on January sea-surface temperatures, is presented in Fig. 9.13.
This forecast was based on research explicitly carried out to support East
African food security decision-making in situations similar to those of
2010/11. Since the 1980s, March�May rains in Somalia have declined
precipitously, with poor rainfall levels in most years since 1999. While
good rains were received during the El Niño-like 2010 and 2013
March�May seasons, January 2017 sea-surface conditions (Fig. 9.4) were
similar to those associated with most recent March�May dry seasons—
warm west Pacific sea-surface temperatures appear alongside cool or neu-
tral conditions across the equatorial Eastern Pacific. The associated statisti-
cal forecast (Fig. 9.3) was for a 20.8Z standardized anomaly 6 1.1Z.
Taken together, this sequence of staged alerts helped motivate early and
effective humanitarian assistance in Somalia in 2017.

9.6 Conclusion

Droughts are slow onset disasters. Their gradual nature can make them chal-
lenging to detect and predict, but this slow evolution also provides multiple
opportunities for drought identification and mitigation. The most sophisti-
cated approaches to drought early warning employ different types of pro-
ducts at different drought stages. Before the season, statistical and dynamic
climate models can help anticipate outcomes, as can the state of various
large-scale climate modes such as the ENSO. As the season progresses, 1- to
2-week weather model predictions can provide useful information, especially
if these forecasts can be interoperable with observations. At the middle and
end of a typical growing season, soil moisture estimates from land surface
models or vegetation health indices such as the NDVI provide high-quality
assessments of conditions. While these products lag precipitation, they pro-
vide more meaningful information about actual surface conditions. Hence,
they tend to be very useful in the latter half of a rainy season.
Understanding the relative utility of these products, when and where each
can be used most effectively, and how they can be used together, provides a
solid foundation for effective drought monitoring and prediction.
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CHAPTER 10

Practice—evaluating forecast skill

10.1 Introduction

Forecasts of climate, as well as climate’s impacts on agriculture and water
resources (e.g., soil moisture, streamflow, and groundwater), are crucial in
implementing a successful drought early warning system (DEWS) to sup-
port decision-making. Forecasts intended to support a decision need to be
timely and occur routinely, before the point in time when decisions need
to be seriously considered. Forecasts also need to be available at the spatial
and temporal scale most relevant to the decision context. In addition to the
timeliness and appropriateness in terms of decision-making needs, the fore-
casts need to be skillful—or at least better than the alternatives. In order to
assess the skill of forecasts, several methods have been suggested and are
now widely used. The skill is generally expressed quantitatively in terms of
a score—known as skill score. In general, the skill score provides a measure-
ment of the performance of the forecasts during the past events. Typically,
the number of events chosen for skill evaluation has to be sampled from
several different years (generally, 30 years or so) to ensure that the skill score
is indeed, to the extent possible, an accurate representation of the perfor-
mance of the forecasts. Generally, skills of forecasts are also compared with
the skill of “benchmark” forecasts. “Benchmark” forecasts can be “persis-
tence forecasts,” where it is assumed that the current state of a variable will
simply persist into the future over the target period. “Climatological fore-
casts” may also be benchmarks, where it is assumed that the target forecast
will be similar to long-term average conditions. Benchmarks could also be
as simple as a “random” forecast, meaning the forecasts are made based on
pure chance, with zero statistical or dynamical basis.

Forecast skill evaluation provides a rationale for the application of the
forecasts for drought early warning and, hence, supports decision-making.
Therefore forecast skill evaluation is an important component of imple-
menting a DEWS. This chapter describes commonly used forecast evalua-
tion methods, their usages, and their potential strengths and weaknesses,
as well as providing examples of how forecast skill evaluation guides the
application of such methods in DEWS.
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Forecast skill evaluation methods can be broadly classified into two types:
(1) deterministic forecast skill scores and (2) probabilistic forecast skill scores.

10.2 Deterministic forecast skill scores

Forecasts are inherently probabilistic due to the uncertainties associated with
any future outcome. Typically, any climate or weather prediction system
will generate multiple sets of future conditions. The models are initialized
with current conditions and at each future time step, they simulate the var-
iations in winds, clouds, temperatures, and precipitation. No two simula-
tions will be the same. A set of such simulations is typically referred to as
an ensemble. However, oftentimes for the sake of simplicity, an average
(mean or median) of probabilistic forecast scenarios, often referred to as an
“ensemble mean or median,” is presented and communicated. Ensemble
means can be calculated by giving equal weights to all the ensemble mem-
bers or by varying weights based on a predetermined criterion (typically
related to the skill of ensemble members). Ensemble mean forecast is also
referred to as a deterministic forecast. The section below provides key
details regarding frequently used deterministic forecast skill score methods.

Correlation: Correlation is among the most widely used deterministic
forecasts skill score. Mainly, it indicates the linear relationship between
the forecasts and observations. For seasonal scale climate forecasts, the
time step at which correlation is calculated is often annual, and, in that
case, correlation indicates the agreement in the interannual variability of
the seasonal climate forecasts with the interannual variability of observa-
tions. The value of the correlation-based skill score varies from 21 to 1,
with 0 showing no skill and 1 showing perfect skill. There are several
methods to calculate correlation, with the most popular of the methods
being Pearson’s correlation and Spearman’s rank correlation.

10.2.1 Pearson’s correlation
Pearson’s correlation is a measure of the linear relationship between fore-
casts and observations. It is calculated by dividing the covariance of fore-
casts and observations with the product of their standard deviations.
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where Oi and Fi are the ranks of observation and forecast, respectively at
a time step i. n is the total number of time steps (i.e., number of events).
Om and Fm are mean of observations and forecasts, respectively, over the
time step 0 to n.

Fig. 10.1, for example, shows the skill of December�February (DJF)
precipitation and sea surface temperature (SST) forecasts from the North
American Multimodel Ensemble (Kirtman et al., 2013) mean forecasts at
5 months before the season (Fig. 10.1A and B) and 1 month before the
season (Fig. 10.1C and D). The skill is shown in terms of correlation with
observed precipitation and SST, respectively. In this case the skill is calcu-
lated at the native spatial resolution of the forecasts, which is 1-degree
latitude3 1-degree longitude. In cases where the observations are avail-
able at finer spatial resolution than forecasts, then the first step before skill
calculation would be to spatially aggregate the observations to match the
spatial resolution of the forecasts.

Fig. 10.1 highlights a few of the key points regarding forecasts skill.

10.2.1.1 Higher skill at lower lead
By comparing Fig. 10.1A with C, and Fig. 10.1B with D, it can be seen
that, in general, the forecasts skill drops as the lead time, which is the time
between when the forecasts are made and the target forecast period (i.e.,
DJF season in the case of Fig. 10.1). The drop in skill mainly has to do with
the inherent uncertainty in the forecasts, which tends to increase as the time
since the forecasts initialization increases, following Lorenz’s chaos theory.

10.2.1.2 Lower skill in forecasting terrestrial precipitation
Fig. 10.1A and C shows that some of the highest precipitation forecasts
skill regions are over the ocean. The skill over the terrestrial regions are
generally lower and often negligible. This general lack of precipitation
forecasts skill has to do with the spatial distance (leading to greater uncer-
tainty) between the terrestrial regions and the oceans, which are often the
source of the moisture and lack of adequate representations of mountains
and land cover, which affects the precipitation formulation process, and in
some cases, the source of the moisture, which can be terrestrial.

10.2.2 Spearman’s rank correlation
Pearson’s correlation method, described previously, is a widely used
method for calculating forecast skill scores; however, it assumes that a lin-
ear relationship exists between both variables and that they are normally
distributed. This method of correlation calculation is also sensitive to the
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Figure 10.1 Forecast skill, in terms of correlation, of North American Multimodel
Ensemble mean DJF precipitation forecasts made (A) 5 months and (C) 1 month before
the season. Parts (B) and (C) are the same but for DJF SST forecasts. These skill maps
are provided along with the operational forecasts by the U.S. CPC https://www.cpc.ncep.
noaa.gov/products/NMME/. CPC, Climate Prediction Center; DJF, December�February;
SST, sea surface temperature.
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Figure 10.1 (Continued)
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extreme values. Alternatively, the Spearman’s rank correlation method is
calculated using the rank of forecasts and observations rather than absolute
values; hence, it is less sensitive to extreme values. The Spearman’s rank
method examines a monotonic relationship between forecasts and obser-
vations; in other words, it checks if the forecasts increases or decreases
as observation increases or decreases. The quantity of the increase or
decrease in forecasts and observations does not have to be proportionate.
The method to calculate Spearman’s rank correlation is similar to the
method of calculating Pearson’s correlation, with the main difference
being that the Spearman’s rank correlation is calculated using the ranks of
the forecasts and observations.
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where RankOi and RankFi are the ranks of observation and forecast,
respectively, at a time step i. n is the total number of time steps (i.e., num-
ber of events). RankOm and RankFm are the mean of rank of observations
and forecasts, respectively, over the 0 to n time steps.

10.2.3 Equitable threat score (Gilbert skill score)
During the examination of the relationships between forecasts and obser-
vations, for decision-making purposes, it is often useful to know how well
given forecasts can distinguish between two categories of events. For
example, the categories can be “no rain” or “rain,” or, more specific
to seasonal drought forecasting, the categories can be “below normal” or
“not below normal.” The equitable threat score (ETS) is a widely used
skill score that measures how well the forecasts identify a certain category
of event relative to a random forecast. More specifically, this skill score
estimates the fraction of “hits” after accounting for the number of “hits”
that can be obtained purely due to random chance, where “hits” signify
the cases where a certain category of an event is observed and is correctly
forecasted. “Misses” signify the cases where a certain category of an event
happened but was not forecasted, meaning forecasts missed the event.
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The ETS value varies from 21/3 to 1 where 0 indicates no skill and 1
indicates perfect forecast for a given category.

ETS5
hits2 hitsrandom

hits1misses1 falsealarms2 hitsrandom

where

hitsrandom 5
ðhits1missesÞðhits1 falsealarmsÞ

total

hits is the number of times the observation event category is correctly
identified (if observation category is “yes,” the forecast category is also
“yes”); misses is the number of times the observation event category is
not identified (if observation category is “yes,” the forecast category is
“no”); and falsealarms is the number of times the observation event cate-
gory is not misidentified (if observation category is “no,” the forecast cate-
gory is “yes”).

In order for ETS to be useful for decision-making applications, it is
important to identify dichotomous categories of events that are directly
relevant to the target decisions. For example, if decisions are drought
related, the focus category might be “below a certain percentile thresh-
old” (such as “below normal” or “below 33 percentile”). For interested
readers, Shukla et al. (2016) shows the ETS of NMME precipitation and
temperature forecasts in identifying above (. 67 percentile) and below
(,33 percentile) normal events in the Greater Horn of Africa.

10.3 Probabilistic forecast skill scores

10.3.1 Brier skill score
The Brier skill score (BSS) is commonly used to evaluate the quality and
reliability of probabilistic forecasts. This score indicates how well the fore-
casted probability of given events corresponds with the observed fre-
quency. BSS is the mean squared error of the forecast probability (Wilks,
2011).

BS5
1
N

XN
k51
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where BS is Brier skill, N is the number of forecast event pairs, Fk is fore-
cast probability of a given event (can vary from 0 to 1), and Ok can be 0
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or 1 depending on whether the event occurred in the category k or not.
The value of this score varies from 0 to 1, with 0 being the score for per-
fect forecasts. The closer the forecast probability is to the observed proba-
bility (of 0 or 1), the lower and better the score will be. For example, if
an event was observed, the observation probability will be 1, and if the
forecast probability was closer to 1, the BS will be lower and hence the
forecast performance will be higher.

The BSS is calculated by comparing BS of a given forecast with the
BS of a reference forecast, such as climatology.

BSS5 12
BS
BSref

where BSref is Brier skill score of a reference forecast (often climatology),
BSS of 1 will indicate perfect forecasts, whereas BSS of 0 will indicate
forecasts with no skill.

The BSS can be used to track skill of forecasts in near real time. For
example, Fig. 10.2 shows the BSSs of the Climate Prediction Center’s sea-
sonal forecasts of precipitation and temperature from the January 2010 to
December 2018 period. As can be seen in this figure, the skill of tempera-
ture is generally higher than the skill of precipitation, and that skill varies
with time. Note that skill score values shown in this figure are values
averaged over the Conterminous United States and can be higher for spe-
cific regions and seasons.

10.3.2 Ranked probability skill score
The ranked probability skill score (RPSS) is similar to the BSS in that it
is a probabilistic skill score that also indicates how accurate the forecasts
probabilities are relative to reference forecasts, such as climatological
forecasts. The main difference between the two is the number of cate-
gories of events. RPSS events are divided into multiple categories such
as tercile categories, quartiles, or sorted into an even larger number of
categories. Forecasted probabilities for each category of the events are
compared with the observed frequency, and forecasts are rewarded for
assigning higher probability closest to the category in which observation
lies. For example, if during a given event, the observation falls into
the above-normal category, the forecasts that assigned higher probabil-
ity to that category will be considered more skillful than the forecasts
that assigned the lowest probability to that category. In other words,
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the RPSS rewards a forecast for the number of ensemble members that
fall within the observed category. RPSS varies from 0 to 1. Scores
greater than 0 indicates that the given forecast is more skillful than the
reference forecasts (i.e., climatological forecasts), and a score of 1 indi-
cates a perfect forecast.

Figure 10.2 Brier skill score of 0.5 month-lead CPC’s seasonal forecasts of (A) precipi-
tation and (B) temperature, over the Conterminous United States over the period
of January 2010 through December 2018. The plots were generated using
CPC Verification Web Tool (https://vwt.ncep.noaa.gov/index.php?page5 chart). CPC,
Climate Prediction Center.
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The ranked probability score (RPS) is calculated as follows:

RPS5
1

ðN 2 1Þ
XN
n51

Xn
k51

Fk2
Xn
k51

Ok

" #2

where RPS is ranked probability score, N is the number of forecast event
pairs, Fk is forecast probability for category k, and Ok can be 0 or 1
depending on if the event occurred in the category k or not. The value of
score varies from 0 to 1, with 0 being the score for perfect forecasts.

The RPSS of a forecast is calculated by comparing the RPS of the
forecast relative to the RPS of a reference forecast such as climatological
forecast.

RPSS5 12
RPSm
RPSref

where RPSm is the average ranked probability score of the given forecast
(over a given time period) and RPSref is the average ranked probability
score of the reference forecast. The value of the RPSS varies from 2N
to 1, where RPSS of 1 indicates a perfect forecast.

The RPSS is one of the skill scores that the International Research
Institute uses to examine the skill (Goddard et al., 2003) of their precipita-
tion, temperature, and SST forecasts. Fig. 10.3 shows the skill of 0.5
month-lead precipitation and temperature forecasts for all seasons over
the globe. As in Figs. 10.1 and 10.2, this figure also emphasizes higher
skill in the case of temperature relative to precipitation. The figure also
shows the skill to be typically higher in the tropics, especially in the case
of temperature.

10.3.3 Reliability diagram
Another widely used method to examine the skill of probabilistic forecast
is the reliability diagram (Hartmann et al., 2002). As the name implies,
this method measures the reliability of forecasts, which, simply put, means
how accurate forecast probabilities are. A reliability diagram is made by
comparing the forecast probabilities relative to the observed frequencies.
This diagram is of direct value for decision-making purposes, as it tells the
decision-makers how often a given forecast probability of a given category
was actually realized in the observations. A perfectly reliable ensemble
forecast would fall on 1:1 line. For example, a perfectly reliable forecast
ensemble provides X% of probability to events those events will happen
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about X% of times. The reliability diagram is prepared by partitioning
forecast probabilities into multiple categories (e.g., probabilities of 0�1
can be divided into 10 categories of 0.1 probability size bin.) For each bin

Figure 10.3 Ranked probability skill score of lead 1 IRI’s seasonal forecasts of (A) pre-
cipitation and (B) temperature, over the globe and for all the seasons. The plots were
obtained from https://iri.columbia.edu/our-expertise/climate/forecasts/verification/.
IRI, International Research Institute.
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Figure 10.4 Reliability diagram of the UK Met Office forecasts lead 1 (A) JJA precipi-
tation, (B) JJA temperature, (C) DJF precipitation, and (D) DJF temperature over
the globe. The plots were obtained from the UK met office (https://www.metoffice.
gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/glob-seas-prob-skill). DJF,
December�February.
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Figure 10.4 (Continued)
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the observed frequency is calculated to examine the correspondence of
forecast probability with observed frequency.

The hit rate for each of the bins is calculated as follows:

Hitrate5
On

On1NOn

where On is the number of observed instances in the given probability
bin and NOn is the number of instances not observed in the given proba-
bility bin.

Reliability diagrams can be made for a given location or for a large
region, when forecasts over different pixels in a given probability bin are
pooled together. For example, Fig. 10.4 shows the reliability diagram
over the globe of the June�July�August (JJA) precipitation and tempera-
ture forecasts (Fig. 10.4A and B) and DJF precipitation and temperature
forecasts by the UK Met Office’s seasonal forecasts (MacLachlan et al.,
2015). Reliability is shown for each of the tercile categories.

The difference between the reliability curve of the tercile forecasts
and the 1:1 line depicts the reliability of the forecasts. For example, in
general, these figures show that these forecasts tend to overestimate
the probability confidence. When forecast probability values are high,
the reliability curve is below the 1:1 line, which indicates that observa-
tion frequencies are typically smaller than forecast probability. These
reliability diagrams also indicate that, in general, forecasts for above- and
below-normal categories are more reliable than the normal category, as
the reliability cures for above- and below-normal categories are close to
the 1:1 line.

10.4 Summary

Weather and climate forecasts are crucially important for an effective
DEWS. The skill of a DEWS directly depends on the skill of weather and
climate forecasts. This chapter presents a few of the widely used metrics
used for calculating skill of weather and climate forecasts. Those metrics
can be mainly classified into deterministic and probabilistic metric scores.
The chapter also highlights typical tendencies of how skill varies with the
lead time and the areas and variables of most skill.
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CHAPTER 11

Practice—integrating
observations and climate
forecasts

11.1 Approach

Because droughts are slow onset disasters, predictive skill can come from
monitoring systems and climate and weather forecasts. For example, sim-
ply observing rainfall deficits can be an important indicator of future crop
failures of water supply crises. To gain even more lead time, however, it
is useful to leverage the skill provided by weather and climate forecasts.
Combining these information sources in integrated monitoring and pre-
diction systems can seamlessly incorporate information from the ocean,
land, and atmosphere (Fig. 9.2). But to routinely achieve this goal, these
information sources must be made “interoperable.” Typically, coarse reso-
lution forecast information needs to be rescaled to align with higher-
resolution observation data. Fig. 11.1 provides an overview of the basic
process of merging observations with climate forecasts and the main steps
involved. Climate forecasts are typically available at a coarser spatial scale
than the spatial scale at which impact models operate, and the scale at
which drought decisions are frequently made. In addition, climate fore-
casts are typically biased relative to observational data sets. This mismatch
in scale and inherent bias makes it imperative to bias-correct and down-
scale climate forecasts before using them to drive impact models.

In the following section a brief description of a few of the common bias-
correction and downscaling methods is provided. The initial state—or the
state of soil moisture or snow, which represent current hydrologic condi-
tions—is obtained by running the impact model using observed atmospheric
forcings. These observed atmospheric forcings can be based on in situ obser-
vations from weather stations, or satellites, or reanalysis, or all of the above.
The length of the model simulation to generate the best estimate of initial
conditions varies depending on the model and the target initial state.

Post bias-correction, starting from the initial conditions, impact fore-
casts are made by driving the impact models using bias-corrected forecasts.
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The length of the forecast period depends on the period for which cli-
mate forecasts are available, for target decisions as well as the skill of the
impact forecasts. Often the skill of climate forecasts is minimal beyond the
first few months. There are times, however, such as during the middle of
a peak precipitation season, when outlooks may be very skillful for many
months. A poor start to a rainy season, identified by observations, com-
bined with a 1-to 2-month climate forecast indicating continued dry and
warm weather, can often predict water deficits that may persist for up to
9 months, when the seasonal cycle brings next year’s rains and an oppor-
tunity for recovery. Integrated observation�climate�impact models are
ideally suited to providing outlooks within this important window of
forecast opportunity. A key component of such systems, however, is the
downscaling of climate forecasts, discussed here.

Figure 11.1 Schematic of basic steps involved in combining observations.
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Once the impact forecasts are generated, the next important step is to
postprocess them to convert them into drought indicator forecasts. For
example, soil moisture forecasts are typically converted into soil moisture
percentiles. This places potential drought in historic context.

11.2 Bias-correction and downscaling methods

As mentioned earlier, bias-correction and downscaling are crucial steps in
providing impact forecasts by integrating observations with climate fore-
casts. Several statistical methods as well as dynamical downscaling methods
exist. Statistical downscaling is widely used, however, as it is numerically
less expensive. The benefits provided by the substantially higher additional
computational time due to dynamical downscaling are not always appar-
ent. A few of the widely used methods for statistical downscaling are
described in the following sections. Most of the downscaling methods
described here were originally proposed for downscaling climate change
projections; however, in different cases, they have used to downscale sea-
sonal scale climate forecasts as well.

11.2.1 Bias-correction and spatial downscaling method
The bias-correction and spatial downscaling (BCSD) method, as the name
implies, corrects bias in coarse-resolution climate model outputs (applica-
ble for other types of coarse-resolution model outputs as well) and then
downscales the bias-corrected outputs. The method is primarily based on
the widely used quantile mapping approach and was proposed for use in
deriving climate forcings to drive hydrologic models for seasonal scale
hydrologic forecasting applications (Wood et al., 2002), as well as for
long-term hydrologic projections (Wood et al., 2004). The process of
implementing BCSD on seasonal-scale climate forecasts and long-term cli-
mate projections is generally the same, with the only main difference
being that the assumption of nonstationarity in the climate is more appro-
priate for seasonal-climate forecasts than at the climate projection scale.
The two main steps in the process, as mentioned previously, are (1) bias-
correction and (2) spatial downscaling.

11.2.1.1 Bias-correction
Bias-correction is performed by using a quantile mapping approach. In
this approach a bias-corrected value for a target forecast value (or projec-
tions) is obtained by first converting the target forecast value into
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nonexceedance probability using the “forecast” climatology (often
referred to as hindcasts). Once the target value is converted into nonex-
ceedance probability, a bias-corrected value is obtained by using the non-
exceedance probability to query the corresponding value from the
“observed” climatology. Typically, the longest overlapping period
between the historical “observations” and “forecasts” is used for each cli-
matology. Also, for “forecast” climatology, all ensemble members of the
hindcasts are used to form one climatology, as the assumption is that dif-
ferent model ensemble members come from the same climatology. For
example, a model with 10 ensemble members over the 1981�2010 cli-
matological period will have 300 members in the climatology: 30—num-
ber of years—multiplied by 10—number of ensemble members, assuming
the climatology is made of monthly/seasonal values. For daily values the
number of events will increase by the length of the moving window
period (often a 15-day window, centered on the target forecast day). The
choice of the climatological period—both in terms of the number of years
to include and in the case of submonthly forecasts (such as daily fore-
casts)—is an important one. The climatology should ideally include the
largest possible sample of the events that are most representative of the cli-
mate of the target forecasts. For example, when bias-correcting daily fore-
casts, it is a common practice to include all the forecasts for the days
within a 15-day window of the target day (e.g., January 1�15, to bias-
correct a target forecast of January 8).

Similarly, the important choice to be made is the type of distribution
to use. Often, the choice is between using empirical distributions versus
theoretical distributions, and if theoretical distributions are used, then the
choice of which theoretical distribution to use must be made.

11.2.1.2 Spatial downscaling
Once the bias-correction is done, the next step is downscaling. Typically,
after bias-correction, the bias-corrected values are converted into anomalies
(additive anomalies in the case of continuous variables such as temperature
and multiplicative anomalies in the case of noncontinuous variables such as
precipitation). The anomalies are then interpolated to the grid of the fine-
scale observations. For interpolation, there are several available methods such
as bilinear and bicubic interpolation. Once the interpolation is done, the
anomalies are applied onto the fine-scale “observed” climatology to get bias-
corrected values at the fine-scale spatial resolution. Depending on the cases
following the spatial downscaling, temporal downscaling may be required.
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11.2.2 Constructed analog method
The constructed analog (CA) method, proposed in Hidalgo et al. (2008), has
been primarily used for downscaling climate change projections. In this
method a “best” set of analogs of the future climate events, taken from an
archive of the past observed climate, is combined (typically weighted average)
to provide downscaled versions of the future climates. Predictors used in this
method are typically synoptic scale fields (such as precipitation, temperature,
and geopotential heights). Future projections of those synoptic-scale fields are
compared with a library of past observed synoptic scale fields (from a reanaly-
sis or observational based data set, etc.) for the same time of the year (similar
to the BCSD method), and “best” analogs are selected (typically the top 30).
Based on the similarity of each analogue with the future conditions, they are
assigned weights, which are used to provide a weighted mean of the analogs.
The weighted mean is used as “downscaled” climate projections. The basic
assumption in the CA method is dynamically sound, and it also takes into
account the regional complexity and spatial coherence better than the BCSD
method and can actually enhance the skill (i.e., performance in capturing
interannual variability) of seasonal-scale climate forecasts, as demonstrated in
(Shukla et al., 2014). However, this method does not account for the bias in
the climate model outputs; hence, a bias-correction step is needed either
before or after applying the CA method (Maurer et al., 2010; Abatzoglou
and Brown, 2012). The implementation of the CA method can be summa-
rized by the following equations:

Zcoarse 5ZanalogsAanalogs (11.1)

where Zanalogs are the best set of analogs from the library of the coarse res-
olution patterns of synoptic fields. Zcoarse is the target pattern and Aanalouges

is the least-square estimates of the regression coefficients that indicate the
contribution of each of the Zanalogs to constructing Zcoarse

Aanalogs is obtained from Eq. (11.3):

Aanalogs 5 Z
0
analogsZanalogs

� �21
Z

0
analogs

h i
Zcoarse (11.2)

where Z
0
analogs denotes the matrix transpose. Finally using the linear

regression coefficients Aanalogs and fine-scale analogs Panalogs at the same
time steps as Zanalogs, downscaled synoptic fields Pdownscaled can be estimated
following Eq. (11.4):

Pdownscaled 5PanalogsAanalogs (11.3)
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11.2.3 Multivariate Adaptive Constructed Analogs
The Multivariate Adaptive Constructed Analogs (MACA) method
(Abatzoglou and Brown, 2012) was proposed to address the limitations in
the CA method. First, the MACA method uses the daily BCSD method
to correct the bias in the general circulation model outputs before the
application of the CA method, which the CA method does not do. Next,
an Epoch adjustment is done to account for another limitation of the CA
method in the cases when no analogs of the future climates exist in the
past. Epoch adjustment removes the differences in the mean of the future
and the past climate. Next, the CA method is applied on the bias-
corrected and Epoch-adjusted fields. The MACA method also performs a
multivariate search for analogs—for example, based on temperature max,
min, and dew point, rather than one field only. This step helps ensure the
dynamical consistency among different related variables. After the CA
method the resulting downscaled product again goes through Epoch
adjustment based on the differences calculated in the previous step.
Finally, after the second Epoch adjustment, the resulting downscaled
product is again bias-corrected following the BCSD method. Downscaled
climate projections using MACA can be found at https://climate.north-
westknowledge.net/MACA/index.php.

11.2.4 Bayesian merging
Bayesian merging of climate model outputs to drive impact models such as
hydrologic models is based on the Bayes’ theorem. Bayes’ theorem provides
the probability of an event based on the knowledge of conditions that are
related to that event. The application of Bayes’ technique for merging cli-
mate model outputs to drive hydrologic models is presented in (Luo et al.,
2007; Luo and Wood, 2008). The implementation of Bayes’ theorem for
merging climate model outputs is carried out by the following equation:

p θjyð Þ5 pðθjyÞpðyjθÞ
pðyÞ (11.4)

where pðθÞ is the assumed prior distribution of θ. Often the climatological
distribution is assumed as the prior distribution. pðyjθÞ is the likelihood
function that describes the relationship (estimated beforehand) between
the probability of θ given the prior knowledge of y. p θyð Þ is the posterior
distribution that provides the updated probability of θ due to the prior
knowledge of y.
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The primary benefit of the Bayes’ merging approach, as described in
Luo and Wood (2008), is that it corrects the forecast probability based on
the prior knowledge of the performance of the historical forecasts. It also
corrects for bias and downscales the forecast, through the likelihood func-
tion, which relates forecasts at coarse spatial resolution with observations
at fine spatial resolution.

11.3 An example: The NASA Hydrological and Forecast
Analysis System

The National Aeronautics and Space Agency (NASA) Hydrological and
Forecast Analysis System (NHyFAS) provides forecasts of soil moisture
over the next 6 months, for Africa and the Middle East regions, which
are prone to water and food insecurity events. The maps from this system
are provided near the mid-month via https://lis.gsfc.nasa.gov/projects/
nhyfas. Fig. 11.2 provides an overview of the NHyFAS framework.

This system is built upon NASA’s Land Information System (LIS,
https://lis.gsfc.nasa.gov/), which allows for a high-performance terrestrial
hydrology modeling and data assimilation using multiple land surface
models. The Climate Hazards InfraRed Precipitation with Station (Funk
et al., 2015) and NASA’s reanalysis data set MERRA-2 (Gelaro et al.,
2017) are used as observed atmospheric forcings to drive the LIS

Figure 11.2 Overview of the NHyFAS. NHyFAS, NASA Hydrological and Forecast
Analysis System. Adopted from Arsenault, K. R., Shukla, S., Hazra, A., Getirana, A.,
Mcnally, A., Kumar, S. V., . . . Verdin, J. P. (2020). The NASA hydrological forecast system
for food and water security applications. Bulletin of the American Meteorological
Society. https://doi.org/10.1175/bams-d-18-0264.1.
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framework to (1) generate long-term climatology of hydrologic variables
such as soil moisture used for drought forecasting and (2) provide an esti-
mate of initial conditions at the time of the hydrologic forecast initializa-
tion. The NHyFAS uses North American Multimodel Ensemble
(NMME, Kirtman et al., 2013) climate forecasts to provide drought fore-
casts, after bias-correction and downscaling. The BCSD method is used to
correct the bias in climate forecasts relative to the observed atmospheric
forcings mentioned previously. Since the NMME forecasts are typically
available by the 10th of the month, the hydrologic forecasts derived using
them are made available around the 15th of the month. These hydrologic
forecasts (i.e., forecasts of soil moisture) are then converted into soil mois-
ture percentiles, which are an indicator of agricultural drought, thereby
informing drought forecasts and early warning.

Primary end users of this drought forecasting system include USAID’s
Famine Early Warning Systems Network (FEWS NET) (https://fews.net/
). The FEWS NET provides early warning of food insecurity outlooks in
Africa (among other regions such as Central America and Central Asia).
Climate-driven extremes such as drought and flood contribute to food
insecurity in this region; hence, the NHyFAS supports the early warning
efforts of FEWS NET by routinely providing updates of expected
drought (and flood) conditions throughout Africa.

11.4 Summary

Climate forecasting is an important tool for supporting drought forecasting.
The use of climate forecasts to drive impact models (such as hydrologic
models or crop models) to provide impact forecasts is done to (1) provide
forecasts of variables that are directly relevant to drought decision-making
and (2) allow for the integration of observations with climate forecasts.
This process can further increase the skill and value of the impact forecasts,
because the integration of observations can add greatly to the overall skill.
The integration of climate forecasts with observations, however, requires
bias-correction and downscaling due to mismatches in the scale at which
climate forecasts are available and the scale at which impact models are
run, as well as the inherent bias in the climate forecasts relative to observa-
tions. This chapter has described a few of the common statistical downscal-
ing methods and lists their potential strengths. The chapter also provides an
example of the integration of observation and climate forecasts for provid-
ing drought forecasts over Africa and the Middle East.

184 Drought Early Warning and Forecasting

https://fews.net/


References
Abatzoglou, J.T., Brown, T.J., 2012. A comparison of statistical downscaling methods

suited for wildfire applications. Int. J. Climatol. 32, 772�780. Available from: https://
doi.org/10.1002/joc.2312.

Funk, C., et al., 2015. The climate hazards infrared precipitation with stations—a new
environmental record for monitoring extremes. Sci. Data 2, 1�21. Available from:
https://doi.org/10.1038/sdata.2015.66.

Gelaro, R., et al., 2017. The Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2). J. Clim. 30, 5419�5454. Available from:
https://doi.org/10.1175/JCLI-D-16-0758.1.

Hidalgo, H.G., Dettinger, M.D., Cayan, D.R., 2008. Downscaling with Constructed
Analogues: Daily precipitation and temperature Fields Over the United States PIER Energy-
Related Environmental Research Report CEC-500-2007-123 (Sacramento, CA: California
Energy Commission).

Kirtman, B.P., et al., 2013. The North American Multimodel Ensemble: Phase-1
seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal predic-
tion. Bull. Am. Meteorol. Soc. 95, 585�601. Available from: https://doi.org/
10.1175/BAMS-D-12-00050.1.

Luo, L., Wood, E.F., 2008. Use of Bayesian Merging Techniques in a multimodel seasonal
hydrologic ensemble prediction system for the Eastern United States. J. Hydrometeorol.
9, 866�884. Available from: https://doi.org/10.1175/2008JHM980.1.

Luo, L., Wood, E.F., Pan, M., 2007. Bayesian merging of multiple climate model forecasts
for seasonal hydrological predictions. J. Geophys. Res. Atmos. 112. Available from:
https://doi.org/10.1029/2006JD007655.

Maurer, E.P., Hidalgo, H.G., Das, T., Dettinger, M.D., Cayan, D.R., 2010. The utility of
daily large-scale climate data in the assessment of climate change impacts on daily
streamflow in California. Hydrol. Earth Syst. Sci. 14, 1125�1138. Available from:
https://doi.org/10.5194/hess-14-1125-2010.

Shukla, S., Funk, C., Hoell, A., 2014. Using constructed analogs to improve the skill of
National Multi-Model Ensemble March-April-May precipitation forecasts in equato-
rial East Africa. Environ. Res. Lett. 9, 094009. Available from: https://doi.org/
10.1088/1748-9326/9/9/094009.

Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long-range experimen-
tal hydrologic forecasting for the eastern United States. J. Geophys. Res. Atmos. 107,
ACL 6-1�ACL 6-15. Available from: https://doi.org/10.1029/2001JD000659.

Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of
dynamical and statistical approaches to downscaling climate model outputs. Clim. Change
62, 189�216. Available from: https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.

185Practice—integrating observations and climate forecasts

https://doi.org/10.1002/joc.2312
https://doi.org/10.1002/joc.2312
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1175/BAMS-D-12-00050.1
https://doi.org/10.1175/2008JHM980.1
https://doi.org/10.1029/2006JD007655
https://doi.org/10.5194/hess-14-1125-2010
https://doi.org/10.1088/1748-9326/9/9/094009
https://doi.org/10.1088/1748-9326/9/9/094009
https://doi.org/10.1029/2001JD000659
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e


CHAPTER 12

Practice—actionable information
and decision-making networks

While the origin of the concept is unclear, it is common to place decision-
making in the context of the data�information�knowledge�wisdom hierar-
chy (Fig. 12.1). In the experience of a person, “data” might be the raw sensa-
tions experienced via touch, taste, hearing, vision, and smell. In and of
themselves, these stimuli provide little value. When interpreted by the brain,
these sensations become meaningful. Noise becomes language, or an identifi-
able sound, such as laughter or the roar of a jet engine. Through this process
of distillation, interpretation, and contextualization, data becomes informa-
tion. Data as information is placed into context, used to answer questions,
and given specific relevance or meaning. In the context of a drought early
warning system (DEWS), data might refer to the recorded mercury level in a
weather station thermometer, or the thermal infrared irradiance observed by
a weather satellite. Such data begins its journey toward information through
interpretation as specific geophysical variables. The development of timely,
accurate, and robust flows of such information is a necessary but insufficient
aspect of an effective DEWS. Petabytes of information do not an effective
early warning system make. The same caveat holds for online portals and
websites. Providing websites with vast content is not synonymous with an
effective DEWS. Effectiveness arises from (1) the translation of drought infor-
mation into reasonably accurate and timely estimates of drought impacts and
(2) the combination of such information with effective mitigation and

Figure 12.1 The data�information�knowledge�wisdom hierarchy as it might apply
for effective DEWS. DEWS, Drought early warning system.
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management responses. Information must be useful to be used, and it must
be used to be useful.

In this context, raw observations (data) are translated into interpreted
observations (information), which are then translated into estimated drought
impacts (knowledge). These transformations also broadly align with observa-
tions systems, climate services, and DEWS. Each of these components builds
upon the system below. One recurrent theme in this book has been the
need to effectively combine multiple data and information sources to support
estimates of drought impacts. The format of effective and actionable informa-
tion often involves a translation into sector-specific impacts and recommenda-
tions. For example, observed and predicted meteorological conditions can be
translated into specific potential forecasts of streamflow, reservoir levels, or
snowpack. A similar transformation process can be used to predict agricultural
outcomes or rangeland conditions. Such transformations can make drought
information much more usable.

One excellent process for estimating drought impacts, discussed in
Chapter 5, Tools of the trade 2—land surface models, involves running
hydrologic and land surface models. These models can assimilate a broad
suite of observations and translate this data into specific estimates of runoff,
streamflow, or snowpack. This information can be used to guide decisions
surrounding water use and storage. Another very common translation, dis-
cussed briefly in Chapter 9, Sources of drought early warning skill, staged
prediction systems, and an example for Somalia, and Chapter 10,
Practice—evaluating forecast skill, involves the translation of drought signals
into estimated shocks to agricultural and pastoral/ranching livelihoods.
Crop models or statistical relationships can often be used to translate envi-
ronmental conditions into specific outcome-related information.

In all of these examples, abstract information is transformed into sector-
specific information. For example, a 200-mm seasonal rainfall deficit is trans-
lated into a specific change in streamflow or crop yields. These latter drought
impacts can be further interpreted as impacts associated with economic and
health-related outcomes. Low streamflow values might reduce hydropower
availability or increase the risk of acute diarrhea and cholera. Reduced yields
might decrease farm incomes and increase food prices.

To be drought early warning system as opposed to drought warning
system, systems must support early assessments of drought impacts. Early
information arises from at least three sources. The first and easiest source is
produced by the inherently lagged responses of many important drought
impacts. Many regions of the world grow crops during the summer using
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snowmelt from winter storms. Rivers and streams generally experience
low-flow conditions months after the peak period of precipitation.
Almost all rainfed crops exhibit a fairly long delay between the critical
periods of green vegetation growth and grain filling, and the time when
the crops are actually harvested. The economic impacts of yield deficits,
both for farmers and market prices, will also be delayed. Such lags mean
that timely monitoring systems, in and of themselves, can provide effec-
tive early warning tools, especially when drought information is rapidly
and accurately transformed into drought impact assessments.

Fig. 12.2 provides an example of such “easy” early warning, based on
the maps of snow water equivalent for Afghanistan.1 These maps are pro-
duced by the National Aeronautics and Space Administration (NASA)
(https://ldas.gsfc.nasa.gov/fldas) using the Famine Early Warning Systems
Network (FEWS NET) Land Data Assimilation System (FLDAS)
(McNally et al., 2017). While setting up and running this instance of the
NASA Land Information System is challenging, using it to anticipate
drought impacts in Afghanistan can be quite straightforward, given the
long lead time between Afghanistan’s main period of precipitation accu-
mulation (boreal winter) and crop production (boreal summer). In early
2018 NASA analysts2 used the FLDAS to identify that a commonly used
metric of snowpack—FLDAS-modeled estimates of February soil water
equivalence—was the lowest on record since 2001. This information was
used by FEWS NET to provide early warning.

The natural progression of the annual weather cycle, typically referred
to as a region’s “climate” or long-term average weather conditions, pro-
vides a second “easy” source of early warning skill. In general, almost all
droughts evolve in interaction with the climatological sequence of precip-
itation. Except for a few regions of the tropics, most areas exhibit one or
two distinct rainy or snowy seasons a year. As one approaches and passes
the midpoint of these seasons, the type of integrated DEWS described in
this book can provide increasingly accurate and precise sector-specific
impact predictions. Quantifying the chance that streamflow, reservoir
levels, snowpack, growing conditions, or fodder availability might recover
from early or midseason water deficits can be relatively straightforward,

1 https://nasaharvest.org/news/afghanistan-drought-research-highlights-harvest-partner-
amy-mcnally

2 ,https://earthobservatory.nasa.gov/images/91851/record-low-snowpack-in-
afghanistan.. Analysis performed by NASA scientists Amy McNally and Jossy Jacob.
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Figure 12.2 FEWS NET FLDAS estimates of Afghanistan snow water equivalent levels for 2017 and 2018. FEWS NET, Famine Early
Warning Systems Network; FLDAS, Land Data Assimilation System. Image from https://earthobservatory.nasa.gov/images/91851/record-low-
snowpack-in-Afghanistan.
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yet also a very powerful source for early warning and effective response.
This progression can be seen in Fig. 12.2. By early March the snow water
equivalent for Afghanistan can be assessed through the middle of the sea-
son. Given that the value for 2018 was at an historic low, the chance of
recovery was also very low.

Using historical data sets such as the Climate Prediction Center’s African
Rainfall Climatology version 2 (ARC2) product (Love et al., 2004), it is pos-
sible to assess the chance of a seasonal recovery by combining observed con-
ditions with samples from past seasons. Such sampling typically assumes that
all prior outcomes are equally probable, but other selection criteria might be
used, such as selecting years with El Niño-Southern Oscillation conditions
similar to those in a given season. Fig. 12.3, for example, shows seasonal
ARC2 precipitation accumulations for October�December of 2019 from a
region located in the maize triangle of South Africa. This is a very critical
maize-growing region for southern Africa. The ARC2 rainfall observations
extend to October 22. Seasonal accumulations beyond that point are simu-
lated using all the available previous seasons (shown with thin black lines).
While normal or above-normal October�December rains are possible for
this region, the slow onset of rains appears likely to result in below-normal
October�December precipitation totals.

Finally, as discussed in Chapter 9, Sources of drought early warning skill,
staged prediction systems, and an example for Somalia, and Chapter 11,
Practice—integrating observations and climate forecasts, climate and weather
forecasts can be integrated with observations to peer into the future and help
anticipate drought impacts. When these three sources of early warning skill
are combined, seamless drought impact outlooks can be produced before,
during, and after a season, supporting a defense-in-depth approach. In prac-
tice, in most places, the development of such systems remains a goal for the
future. In theory, however, our current capacities should be able to support
their development in the near future.

12.1 Actionable information and the three pillars

It should be realized, however, that effective DEWS need to be combined
with the two other pillars of drought risk management: drought vulnera-
bility and risk assessment, and drought preparedness, mitigation, and
response (Fig. 12.4). Together with drought monitoring systems, these
provide the key building blocks of an effective drought management
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Figure 12.3 Seasonal ARC2 precipitation accumulations for October�December of 2019 from a region located in the maize triangle of
South Africa. Rainfall observations extend to October 22. Values beyond October 22 are based on historic samples. From the Climate
Prediction Center (CPC) Africa Desk at ,https://www.cpc.ncep.noaa.gov/products/international/africa/africa.shtml. (accessed on 24.10.19).
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policy (Wilhite, 2011).3 For example, Tadesse’s (2016) white paper
“Strategic Framework for Drought Risk Management and Enhancing
Resilience in Africa” () provides an excellent description of how these
components can fit together to inform effective policy. Effective drought
management involves drought policy and governance for drought risk
management; drought monitoring and early warning, drought vulnerabil-
ity and impact assessment; drought mitigation, preparedness and response;
knowledge management and drought awareness; and finally, reducing the
underlying factors of drought risk.

Proactive drought risk management involves a thorough understanding
of the local risks (Tadesse, 2016) associated with meteorological, agricul-
tural, hydrologic, and socioeconomic droughts (Wilhite, 2000) (Fig. 12.5).
Natural climate variability, potentially enhanced by human-induced cli-
mate change, can reduce precipitation or increase reference evapotranspi-
ration (RefET) by increasing temperature, winds, incoming solar
radiation, or reducing relative humidity. Changes in infiltration into the
soil, runoff, interflow, and ground water recharge, combined with varia-
tions in actual evaporation and transpiration, can conspire to produce soil
water deficiencies. These deficiencies, in turn, can lead to plant water
stress, reduced biomass and yields, as well as reduced streamflows, and
inflows to reservoirs, lakes, ponds, and wetlands. These anomalies can also
negatively affect wildlife habitats.

Drought risk management seeks to understand and identify the various
components of drought risk, along with the various strategies for manag-
ing these hazards (Hayes et al., 2004). Drought risk management can be
broadly categorized into two fundamental categories of action: proactive
risk reduction and reactive drought responses; it covers planning and
response, managing both drought risks and impacts (Pulwarty and
Sivakumar, 2014). Actionable drought information supports these
objectives.

Figure 12.4 The three pillars of drought risk management.

3 http://www.droughtmanagement.info/pillars/
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Figure 12.5 Relationships between meteorological, agricultural, hydrological, and socioeconomic droughts and their impacts. After
Figure 6 in Tadesse, T., 2016. Strategic framework for drought risk management and enhancing resilience in Africa. In: African Drought
Conference based on a framework provided by the National Drought Mitigation Center, University of Nebraska-Lincoln, USA.



12.2 Actionable information and decision-making
networks—an example from famine early warning in
East Africa
Effective DEWS provide information that supports real world responses. By
providing early information, these systems can support actions that blunt neg-
ative drought impacts. So, the provision of actionable information often
involves a translation into sector-specific impacts and recommendations. In
practice, this almost always involves the supposition and interpenetration of
multiple networks of human specialists. For example, moving from left to
right across Fig. 12.1, we have Data-Information-Knowledge-Wisdom,
or Observation systems-Climate services-Drought early warning
systems-Drought response systems. On the left of this series, we find tech-
nical experts: satellite engineers, meteorologists running weather and climate
models, and so on. Despite their technical focus, many members of this com-
munity will certainly desire that their products benefit society. This leads to
the next layer, which contains specialists focusing the provision of climate ser-
vices. Climate services provide environmental information and forecasts in
accessible, timely formats suitable for societal applications. Experts within the
next early warning layer translate this information into sector-specific impacts
(Fig. 12.5). This book has emphasized the utility of a staged multiproduct
approach to early warning. This staged approach provides multiple opportu-
nities for drought detection. Just as important, however, is that this approach
can provide the next set of experts—the final layer containing response sys-
tems and decision-makers—adequate time to put in place and execute a con-
tingency plan. Even this “last mile” layer will typically contain both domain
experts and policy and business decision-makers.

When they function correctly, these overlapping networks of human
experts provide a tremendous example of our ability to work together
collectively to guard lives and livelihoods. Dozens or even hundreds of
experts may play a role in motivating an effective disaster response. Here,
using the context provided by one specific multipartner activity, the
FEWS NET (www.fews.net), we provide examples of actionable infor-
mation in the context of the FEWS NET food security projection pro-
cess. Created in 1985 by the U.S. Agency for International Development
(USAID) after devastating famines in East and West Africa, FEWS NET
provides objective, evidence-based analysis to help government decision-
makers and relief agencies plan for and respond to humanitarian crises.

Analysts and specialists in 19 field offices work with U.S. Government
science agencies, national government ministries, international agencies,
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and nongovernmental organizations (NGOs) to produce forward-looking
reports on 28 of the world’s most food-insecure countries. The “NET” in
FEWS NET represents a vast network of internal and external partners,
ranging from collaborators in data collection and analysis to consumers of
FEWS NET reports. FEWS NET products include monthly reports and
maps detailing current and projected food insecurity timely alerts on
emerging or likely crises, specialized reports on weather and climate, mar-
kets and trade, agricultural production, livelihoods, nutrition, and food
assistance.

The FEWS NET DEWS (Funk et al., 2019) is just one component of
a much larger analytical framework that provides assessments of food-
insecure populations. The DEWS supports monthly food security out-
looks (Magadzire et al., 2017), which inform contingency planning and
assessments of food insecurity (Verdin et al., 2005; Choularton, 2007;
Brown, 2008). While drought monitoring and drought impact assessments
play an important role in FEWS NET, they are just one potential driver
of food insecurity. Adopting Aristotle’s causal nomenclature (Fig. 12.6),
we can describe the “ultimate” and “proximate” causes of severe food
insecurity. Severe hunger can stem from multiple ultimate causes: in addi-
tion to drought, conflict, poverty, population pressure, poor governance,
a lack of health services, and land degradation can lead to severe undernu-
trition. These and other factors almost always act in some combination,
resulting in a hazardous combination of shock, exposure, and vulnerability
(discussed in Chapter 6: Tools of the trade 4—mapping exposure and vul-
nerability). To cope with these complex interactions, FEWS NET food
security analysts have developed a sophisticated food security scenario
development process.4 The ultimate goal of this process is to identify and
quantify the number of extremely food-insecure people in the world’s
most food-insecure countries. To achieve this goal, FEWS NET analysts
examine the proximate causes of food insecurity: food access, food avail-
ability, nutrition, and stability (Brown et al., 2015). These analysts form
an international network that would be located at the right-hand side of
Fig. 12.1.

Yet it is important to note that to the right of this network of analysts,
an additional network of decision-makers who program and deliver
humanitarian responses exists. This network comprises experts at the

4 https://fews.net/sites/default/files/documents/reports/
Guidance_Document_Scenario_Development_2018.pdf
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USAID’s Office of Food for Peace and the World Food Programme, for
example. Such interconnecting layers of experts play a critical role in the
effective use of the information provided by DEWS. Without food secu-
rity analysts, even the most perfect drought information provided by the
FEWS NET DEWS would be of limited value. These analysts consume
DEWS information, evaluate the proximate drivers of food insecurity
(food access, food availability, nutrition, and stability), and estimate spe-
cific levels of food insecurity, quantified using the tools and protocols of
the Integrated Phase Classification (IPC) system (Frankenberger and
Verduijn, 2011).

The FEWS NET food security scenario development process (see
footnote 5) is based on a household (HH) level food security analysis.
This procedure is based on six steps (Fig. 12.7). Step 1 identifies the spe-
cific geographic area of focus, the associated population, and the type of
HH group to be analyzed. This group is chosen because it is likely to be
very food insecure. Characterizations of the livelihoods of the target HH
play a major role in the analysis. During Step 2, analysts characterize the
current food security situation and describe HH level consumption and
food access. What key assets do these HHs rely on to access food and
income? What strategies do they use to gain income and access food?
Finally, analysts use all the available information to assign the modeled

Figure 12.6 Ultimate and proximate causes of food insecurity, along with informa-
tion sources and proximate indicators suitable for food.
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Figure 12.7 The FEWS NET food security scenario development process. FEWS NET, Famine Early Warning Systems Network. From the
FEWS NET guidance document ,https://fews.net/sites/default/files/documents/reports/Guidance_Document_Scenario_Development_2018.
pdf..
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HHs an IPC score. A score of 2 indicates food stress. A value of 3 or 4
denotes a serious or very serious food security crisis or emergency. A value
of 5 indicates famine conditions.

In the next (third) step, analysts provide key assumptions about what is
likely to happen over the 4- to 8-month period. These assumptions often
relate to rainfall performance, crop production, wage levels, water and
pasture availability, livestock births, and staple food prices. Step 4 then
relates these assumptions to HH incomes, which, along with food prices,
strongly determine HH food access, that is, the ability to buy adequate
and nutritious food. Step 5, in a similar fashion, relates the food security
assumptions to impacts on HH food sources, which often strongly influ-
ence impacts on food availability, that is, the ability of a HH to directly
procure food via crop, vegetable, and livestock production. The results of
Step 4 and Step 5 are then used in Step 6 to make projections of the
number of food-insecure people.

Fig. 12.8 shows an example of FEWS NET food-insecure population
estimates for Ethiopia, Kenya, and Somalia, drawn from FEWS NET
Food Assistance Outlook Briefs.5 Following another poor March-to-May
rainy season in 2019, these countries once again faced atypically high
levels of acute food insecurity, based on numerous analyses by national
and international food security analysts. This bar plot shows estimates of
the total number of people anticipated to experience food insecurity,
defined through classification at IPC Phase 3 or higher. FEWS NET pro-
jections are used for estimates beyond August 2019.

Two important features can be noted in this time series. First, the
2019 food security situation appears very concerning, with the size of the
expected food-insecure population remaining similar to recent crises in
2016 and 2017. The 2016 and 2017 crises were associated with the strong
2015/16 El Niño and the 2016/17 La Niña, and related droughts (Funk
et al., 2018). Despite only weak El Niño conditions, the 2019 March-to-
May season was also very dry.6 The recent dry conditions in the Horn of
Africa have largely been observed in pastoral areas, where recovery is typi-
cally more protracted than in agricultural areas. While one good growing
season may rapidly improve economic conditions for farmers, it can take
years for herds of livestock to be built backup.

5 http://fews.net/global/food-assistance-outlook-brief/
6 http://blog.chg.ucsb.edu/?p5 592
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Second, the data may indicate a large systematic increase in the fre-
quency and magnitude of severe food insecurity. In 2014 and 2015 typical
levels of acute food insecurity were at about 2 million people. Since 2015
this appears to have increased to around 6�10 million people. Following
severe droughts in 2015, 2016/17, and 2019, FEWS NET has anticipated
10�12 million people in IPC Phase 3 or higher.

For Ethiopia and Kenya, these trends appear surprising, given esti-
mates of annual incomes for the poorest 20% of the population
(Fig. 6.9). These estimates are based on World Bank Development indi-
cator statistics and have been produced by combining gross national
income values, based on the Atlas method7 and expressed in current U.
S. dollars, population, and estimates of the income share held by the
lowest 20%. These latter factors are only observed intermittently, and

Figure 12.8 Consecutive FEWS NET Food Assistance Brief projections of food-
insecure population totals for Ethiopia, Kenya, and Somalia, based on the average
low and high estimates. FEWS NET, Famine Early Warning Systems Network.

7 https://datahelpdesk.worldbank.org/knowledgebase/articles/77933-what-is-the-world-
bank-atlas-method
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linear interpolation has been used to produce continuous estimates.
Ethiopia and Kenya, however, have recent surveys from 2015, during
which the share of income estimates for Ethiopia and Kenya were just
6.6% and 6.2%—the poorest 20% in these countries only earn about 6%
of the overall wealth. Considering these national scale indicators alone,
one might anticipate a dramatic decline in vulnerability to food insecu-
rity, since average incomes for poor HHs have increased by more than
300% since the early 1990s. These national averages, however, obscure
important fluctuations in subnational HH-level incomes, as well as the
potential implications of fluctuations in prices.

We can look at this same data in a different way by contrasting the
average incomes in Kenya and Ethiopia with the incomes earned by the
lowest 20% of the population (Fig. 6.10). What we see in this data is a
substantial increase in the gap between middle class and poor populations.
So, despite the fact that wealth is increasing, we are also seeing an increas-
ing wealth disparity. These income gaps may be interacting with large
fluctuations in commodity and food prices. Commodity prices in Ethiopia
and Kenya remain very volatile, as illustrated by Fig. 6.11, which shows
nominal wholesale maize prices. These values have not been adjusted for
inflation and, hence, may overemphasize recent price increases. On the
other hand, incomes for the poorest HHs may not be keeping pace with
national inflation rates, as implied by Fig. 12.7. Ethiopian maize prices
spiked in September�October of 2017 and have remained relatively high
since. Kenya maize prices exhibit a clear periodicity that aligns with major
recent droughts in 2010/11, 2016/17, and 2019. During these Kenyan
price spikes, we see a doubling of maize prices. For poor HHs living on a
dollar or two a day and spending 60%�70% of their HH income on
food, such spikes can lead to dramatic food access limitations.

So, with this information as background, we next turn to an example
focusing on agricultural production in Somalia, one of the most drought-
sensitive countries in the world. Providing early and actionable quantita-
tive predictions of potential drought impacts vis-à-vis regional annual
cycles is one of the key objectives of modern DEWS. Using agricultural
outcomes in Somalia as an example, we describe such a process, paying
attention to three primary questions: (1) How can we use our preexisting
knowledge to appropriately filter environmental data for the purposes of
agricultural monitoring? (2) How can we translate environmental infor-
mation into quantitative estimates of crop production? And finally, (3)
When can we reliably provide such information?
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Question 1 deals simultaneously with two important aspects of early
warning—having a systematic approach to separating climate “noise” and
climate “signal.” In a region that is very wet, or unpopulated, or not
planted, or out of season, anomalous environmental conditions may not
relate at all to variations in crop yields, HH incomes, HH food availabil-
ity, or variations in food prices. When assessing drought impacts, it is also
important to consider drought exposure, which will be related to how,
and if, the land and water from a given region are being used. It is com-
mon, therefore, to identify crop growing areas, such as those shown in
the upper left of Fig. 12.9. What we see from this panel is that most of
the crop production in Somalia occurs in just a small fraction of the coun-
try. If we are interested in deriving national estimates of crop production,
focusing on this region will refine the accuracy of our results.

Next, we can use our a priori knowledge of crop water requirements
to estimate the amount of water a healthy crop will require. Using
assumptions from the Geospatial Water Requirement Satisfaction Index
model8 and RefET, we can estimate the ideal water requirement for the
most common crop grown in Somalia (sorghum). Somalia has two
growing seasons, a “Gu” season between March and May, and a “Deyr”
season between October and December. Fig. 12.9 shows precomputed
water requirements for each 10- or 11-day period in the second
(October�December) rainy season. These values are derived by esti-
mates of the crop stage and RefET. During the vegetative and grain fill-
ing phases of crop growth, the optimal water requirement matches the
RefET. Before and after these stages the crop water requirement is less
than the RefET value. A plant receiving this much water would assume
to fully meet its water requirement.

While sorghum plants will draw this moisture from the soil, precipita-
tion will likely provide a reasonable proxy indicator in rainfed regions.
Simple comparisons (Fig. 12.9, right) of average Deyr rainfall conditions
and crop water requirements can tell us a lot about typical Somali crop
growing conditions. They are very poor, with average rainfall conditions
only reaching about half the crop water requirements. From a food secu-
rity perspective, this is important information. Most crop seasons in
Somalia are likely to be poor. The season, furthermore, is typically very

8 Support for this analysis was kindly provided by Will Turner, UC Santa Barbara Climate
Hazards Center.
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short. This means that there is a very short window in which farmers can
try to produce a healthy crop.

Under such conditions, we might expect to find strong relationships
between moisture supplies and Somalia crop production. To test this
hypothesis, we created a weighted sum of the observed CHIRPS2.0 pre-
cipitation, in the observed crop growing areas of Somalia. To create this
sum, we used the same crop coefficients used to generate the water
requirement estimates summarized in Fig. 12.9.

PRsum5
X7

i51

kiPi

The crop coefficients for the seven 10- or 11-day periods (dekads)
were 0.3, 0.65, 1, 1, 1, 0.65, and 0.3. The log-linear relationship between
this weighted rainfall total and observed national 1995�2018 sorghum
production was very strong (Fig. 12.10, left), with an R-squared value of
over 0.75. One exceptionally wet season (1997) associated with flooding
and low crop production outcomes was excluded. This data told a com-
pelling story of the extremely broad range of agricultural outcomes. Good
years, with 150 mm or more of rainfall, can produce more than

Figure 12.9 Typical (median) progression of sorghum crop water requirements and
precipitation averaged over crop growing regions in southern Somalia. Crop growing
zones are shaded in magenta and shown in the upper left. Background shading
shows long-term average October�December rainfall.
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Figure 12.10 Left—logistic regression results relating crop-weighted seasonal precipitation totals and national Deyr sorghum produc-
tion. Right—variance explained by successive models fits to totals starting on October 1 and ending on the dekads shown.



100,000 tons of sorghum. Poor years might produce only 40,000 or
20,000. The short growing period and large discrepancies between typical
rainfall amounts and crop water requirements (Fig. 12.9) result in a very
steep relationship between moisture supply and production values.

This relationship can clearly be used to assess crop production, given
observed rainfall totals, producing more “actionable” information for
FEWS NET analysts. Detailed and quantitative assumptions about crop
production (Step 3 in Fig. 12.7) can directly inform projections related to
HH-level food access and availability (Steps 4 and 5). Exploring the per-
formance of our estimates over each dekad of the growing period
(Fig. 12.10, right), we also note that very strong relationships appear
exceptionally early in this region and season. By the first week of
November, when we have all the data for October, our simple regression
model performance saturates with R-squared values of over 0.75.
Physically, this result makes sense. Crops require adequate time to mature,
and the chance of this happening given poor October rains appears
exceedingly low. This has important food security implications. Poor or
failed crop seasons can be robustly identified in November. Note that our
analysis of Normalized Difference Vegetation Index data (presented in
Chapter 9: Sources of drought early warning skill, staged prediction sys-
tems, and an example for Somalia) produced very similar results.

12.3 Conclusion

Effective and actionable drought information systems are inherently com-
posed of networks of partners. To support disaster risk reduction and
drought risk management, experts from many different backgrounds and
areas of expertise must work together effectively. This makes drought
decision support challenging, but also very interesting. Diverse sets of
decision-makers, ranging from large governmental, industry, and NGOs
down to individual farmers, herders, and reservoir managers, all need
effective drought information. This involves the development of net-
worked teams of experts that run observation and modeling systems, pro-
vide climate services, and support DEWS. These systems can provide
“actionable” information by translating environmental conditions into
specific drought impacts (Fig. 12.5). Per capita water availability metrics
and estimates of crop production deficits are two examples of these
impacts. Other impact assessment models can be developed for different
sectoral applications.
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Even the best early warning systems and impact assessments are useless
without strong links to drought response systems and strategies. This can
involve the robust development of, and integration with, the two other
pillars of drought risk management: drought vulnerability and risk assess-
ment, and drought preparedness and mitigation (Fig. 12.4). Strong con-
nections between technical DEWS partners and specialists designing and
implementing disaster response and mitigation activities (Fig. 12.1) can
ensure the robust application of drought early warning information. For
food security applications, such as FEWS NET, the development, moni-
toring, and prediction of appropriate proximate indicators of food access
and food availability can make food security projections more accurate
and timely. An example focused on Somalia showed how an agricultural
modeling lens can be used to filter environmental data in space and time,
producing both insights into Somalia’s severe food insecurity and highly
accurate estimates of national crop production.
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CHAPTER 13

Final thoughts

Some 3.2 million years ago, our common ancestor Lucy walked semierect
across eastern Africa (Fig. 1.1). Around 100,000 years before the present,
the range of Homo sapiens was still limited to southern and eastern Africa
(Fig. 1.2). In the next 30 years, a mere second on the Earth's geological
clock, our world population is expected to reach nearly 10 billion people,
but our warming planet may likely struggle to support twice the food
production of today to meet the rising demand (Ray et al., 2013). This
expansion in population will expose � is exposing � hundreds of millions
of people to increased risks and spikes in disaster frequencies such as
droughts (Fig. 6.2). Managing these crises will require that we improve all
three pillars of drought management systems (Fig. 12.4): drought early
warning systems (DEWS); drought vulnerability and risk assessment; and
drought preparedness, mitigation, and response (Wilhite, 2011).1 Given
that our changing climate is bringing increases in drought frequency,
severity, and duration that impact an ever-increasing number of sectors,
now is the time for improved drought risk reduction (Wilhite et al.,
2014). Responding to this spiral will require a proactive approach that
actively manages and mitigates droughts and drought vulnerability
through effective national policies (Wilhite et al., 2014). Droughts do not
necessarily have to be emergencies (Wilhite et al., 2014), but passively
reacting to drought impacts simply treats the symptoms, rather than root
causes, locking in an “hydro-illogical cycle.” Such a cycle involves a
period of crisis and disaster, rapid, expensive, and relatively unsuccessful
response, followed by a period of forgetting and inaction.

Among Earth’s inhabitants, humans are unique in their capacity to
plan ahead, though we do not always do so. Because droughts are com-
plex multiscale hazards, planning for drought requires complex layers of
planning both coordination and response (Pulwarty and Sivakumar,
2014): “To cross the spectrum of potential drivers and impacts, drought
information systems have multiple sub-systems which include an inte-
grated risk assessment, communication and decision support system of

1 http://www.droughtmanagement.info/pillars/
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which early warning is a central component and output.” Early warning
systems, however, are much more than just forecasts, they must be linked
to risk assessment, communication, and decision support systems
(Pulwarty and Sivakumar, 2014). In this book, we have attempted to
bring together many of the important pieces of DEWS—describing in
one location the basic tools of the trade: observations, forecasts, climate,
and land surface models; exposure and vulnerability assessments, drought
indices; and the impacts of warming—and placed them alongside some
practical applications.

While essentially doomed to be incomplete, given the scope of early
warning systems, our goal has been to provide an accessible “one-stop-
shop” entry point for practitioners or potential practitioners. Because
effective DEWS requires overlapping communities of practice that span
the data�information�knowledge�wisdom hierarchy (Fig. 12.1), it is
useful to bring together discussions involving observation systems, cli-
mate services, DEWS, and drought response systems. Data providers on
the left of Fig. 12.1 can benefit from understanding how DEWS works
and what properties are required to support drought early warning.
Modest systematic nonstationary errors, for example (as discussed in
Chapter 8: Theory—Indices for Measuring Drought Severity), can
wreak havoc in DEWS, leading to false alarms or missed opportunities
for drought forecasts or detection. The seasonal averaging used to iden-
tify droughts can magnify systematic errors, and homogeneous,
stable monitoring and forecast systems are therefore very important
technical inputs for DEWS.

Response planners and responders on the other right-hand “wisdom”

side of the spectrum shown in Fig. 12.1 can benefit from a better under-
standing of how our Earth system provides us opportunities for monitor-
ing and prediction, and how models and observations can be leveraged to
capitalize on these chances to make a difference. This perspective, for
example, highlights the first half of precipitation seasons as a key period of
maximum potential forecast skill. At mid-season, antecedent precipitation,
temperature, radiation, and soil moisture conditions strongly influence the
land surface, snowpack, and vegetation conditions. Two-week weather
forecasts, which are typically quite accurate, give us an outlook for the
heart of the rainy season, and climate forecasts can help use peer a little
further ahead into the next several months. These sources of predictive
skill can be rendered “interoperable” via appropriate downscaling techni-
ques (Chapter 11: Practice—Integrating Observations and Climate
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Forecasts) and used to drive impact models, such as land data assimilation
systems (Chapter 5: Tools of the Trade 2—Land Surface Models).

Because planning for drought requires complex layers of planning
both coordination and response (Pulwarty and Sivakumar, 2014), the
technical components of 21st century’s DEWS need to mimic the com-
plex multiscale nature of droughts themselves, operating on multiple time
frames and spatial scales. The multiscale drivers of drought demand multi-
scale early warning systems, and to this end, we have advocated a staged
approach to DEWS (Fig. 3.7). Such a system includes drought risk assess-
ment prior to the onset of precipitation season, followed by long-lead cli-
mate-based drought outlooks, mid-season assessments, and postseason
evaluations (Fig. 9.6). Such integrated approaches draw on a wonderfully
broad suite of available tools for monitoring, predicting, and assessing the
many varied impacts of meteorological, agricultural, hydrological, and
socioeconomic droughts (Wilhite, 2000) (Fig. 12.5). Like a surgeon,
expert drought analysts will use a broad variety of tools in different
drought stages and contexts. This breadth has an additional value when
viewed from a signal detection perspective (Fig. 9.1). Multiple sources of
information provide multiple opportunities to identify emergent drought
crises, greatly reducing the chance of failure. A well-structured integrated
DEWS should always identify large droughts; the question should be only
“when” not “if.” The Earth system is chaotic, and long-lead climate-
based outlooks will often fail. Late-season recoveries or faulty monitoring
data may confound mid-season assessments. But by the end of a season, a
convergence of evidence approach bolstered by the power of 21st century
satellite-based observing systems should catch almost all extreme events.

Two added benefits of a staged multi-source, multi-scale approach to
developing 21st century DEWS are that (1) this approach can benefit from
the predictive skill arising from multiple sources — slowly varying oceans,
persistent land surface, soil water and vegetation anomalies, and weather-
scale circulation anomalies, while also (2) capturing the potential climate
change impacts associated with these systems as our oceans, land, and
atmosphere warm.

While the science, resources, and techniques are fairly well developed
to support such systems, more needs to be done to develop such capacity
in developing nations (Tadesse, 2016). There is a great need, but also a
great opportunity, to improve links between national and global early
warning systems. To function well, DEWS can really benefit greatly by
taking a network-based approach, drawing information sources from all
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across the internet. When the anesthesiologist puts us under for an impor-
tant operation, we are not really concerned about whether the surgeon’s
scalpel was made in our country. By analogy an effective DEWS can
draw from a myriad of sources of information to provide effective deci-
sion support.

To help guide such efforts, this book has focused on integrating obser-
vations with forecasts to provide actionable impact assessments. Building
on our work with one global system (Famine Early Warning Systems
Network), we have tried to describe how resources provided by global
systems (satellite rainfall estimates, vegetation observations, weather and
climate forecasts, and land surface model simulations) can be translated
into localized sector-specific indices and impact models (Chapter 8:
Theory—Indices for Measuring Drought Severity, and Chapter 9: Sources
of Drought Early Warning Skill, Staged Prediction Systems, and an
Example for Somalia). During the middle of a growing season, all the
sources of predictive skill (ocean, atmosphere, land) contribute, and our
ability to foresee drought impacts often reaches a peak trade-off between
certainty and utility. Capturing that information often requires downscal-
ing weather and climate forecasts and combining them with fine-
resolution observations (Chapter 11: Practice—Integrating Observations
and Climate Forecasts). With the advent of the internet, the data and
modeling resources of many global early warning systems can now be tai-
lored to serve the needs of many national and even subnational early
warning systems.

DEWS, when they successfully link across sectors and communities
can empower a relatively small number of people to make critical deci-
sions that positively impact hundreds of thousands of people and animals,
or vast regions of forest, farm, or rangeland. The rapid advance of com-
puting, satellite observation, and modeling systems makes such decision
support increasingly possible. To achieve this goal, however, the early
warning practitioners must be spread along a continuum that effectively
links data with decisions and information with wise actions. Drought early
warning is ultimately about interpreting our world and speaking to each
other in ways that allow us to make sense of the future, enabling actions
that reduce both future impacts and future risks. Effective DEWS involves
our relationships with time, but also with each other. None of us can do
this alone, but together, we can always do it better. Continued advances
in 21st century drought early warning science will be welcomed by a
thirsty and increasingly warm world.
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