Name and Surname: Nazanin Amiryaghoubi

Sex: Female

Place of Birth: Iran

Date of birth: 1987/7/1

Address: Tabriz, Valiasr Street, No, 21

Telephone Number: 09142449184

Email: nazaninamiryaghoubi@yahoo.com

Education

Education	Thesis work	Total	University	Supervisors	Year
		Average			
Ph.D. in	Preparation of	18.72	Chemistry	Prof. Yadollah	2016-
Organic	polymeric scaffold for		Department of	Omidi and Prof.	2021
Chemistry	bone and cartilage		Urmia University	Nadir Noroozi	
-	tissue engineering			Pesyan	
M.Sc. of	Synthesis of styrenic	19.57	Chemistry	Dr. Mirzaagha	2011-
Organic	polymeric prodrug of		Department of	Babazadeh	2014
Chemistry	valproic acid as an anti-		Azad University,		
-	epilepsy drug		Tabriz, Iran		
B.Sc. in Pure		14.37	Tabriz University		2005-
Chemistry					2010

LABORATORY SKILLS

Synthetic skills	Preparation of polymeric scaffold by free-radical copolymerization and		
	condensation polymerization, Synthesis of magnetic nanoparticles carrier for drug		
	loading, Thermosensitive injectable hydrogel synthesis, Polyester urethane		
	synthesis, Poly propylene fumarate, Synthesis of in situ hydrogels, Targeting Drug		
	Delivery system, Bone and Cartilage Tissue Engineering		
Cell culture	Cytotoxicity assays (MTT, Cell viability, DAPI staining, FITC annexin V test),		
techniques	Cell cycle assay and Cellular uptake, Alizarin Red Assay, Toluidine Blue Assay,		
	Alkaline Phosphatase Activity (ALP), RNA extraction, cDNA synthesis, and real-		
	time polymerase chain reaction (R-T PCR)		
Material	Spectrophotometer UV, Centrifuge, Sonication, FT-IR, ¹ H NMR, DSC test,		
characterization	Compression test, Dynamic mechanical analysis, Water Contact Angle,		
tools	Rehometry, BET, XRD, GPC, TEM, SEM, EDX, DLS, VSM, TGA, AFM, and		
	Drug release test		

Working Experiences

Position	Projects	year	Place of project
Scientific	Preparation of injectable polymer hydrogel for	2017-	Research Center for
researcher	engineering cartilage-joint tissue	2020	Pharmaceutical

			Nanotechnology (RCPN) of Tabriz University of Medical Science
Scientific researcher	New synthetic chitosan-based synthetic smart magnetic nanocomposite for targeted treatment of bone cancer	2021- present	Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science
Scientific researcher	Evaluation of the efficacy of in situ gelling hydrogels based on modified gelling gum using click reactions for effective ocular drug delivery	2022- present	Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science
Scientific researcher	Evaluation of the efficacy of in situ gelling hydrogels based on alginate and chitosan prepared by click reaction for local release of doxorubicin for breast cancer chemotherapy	2022- present	Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science
Scientific researcher	Evaluation of the efficiency of in situ temperature sensitive gelling hydrogels based on chitosan polymer and polyvinyl alcohol containing osteogenic compounds using click reactions for bone tissue engineering	2022- present	Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science
Scientific researcher	Evaluation of in situ forming hydrogels based on chitosan and poly (vinyl alcohol) containing osteogenic compounds for bone tissue engineering	2022- present	Research Center for Pharmaceutical Nanotechnology (RCPN) of Tabriz University of Medical Science

RESEARCH INTERESTS

- Polymeric hydrogel, 3Dprinting and electrospinning method for tissue engineering
- Bone, Cartilage, and Cardiac tissue engineering
- Biological, mechanical, and chemical characterization of scaffold for tissue engineering
- Stem Cells

AWARDS AND HONORS

First-graduated student in the department of organic chemistry Azad University

Seminar Poster Presentation

Conferences	subject	year
The 22nd Iranian Seminar of Organic Chemistry,	Chemical Modification of Styrene-based	2014

Faculty of Chemistry, University of Tabriz	Polymer with Attaching Anti-epilepsy	
	Valproic Acid Group	
The 17th Iranian Seminar of Chemistry, Faculty of	Chemical Modification of Styrene-based	2014
Chemistry, University of Rafsanjan	Polymer with Attaching Anti-epilepsy	
	Valproic Acid Group	
The 27 th Iranian Conference On Organic	Injectable chitosan-based smart hydrogel	2019
Chemistry, Urmia University	for bone regeneration	
The 2nd Nanomedicine & Nanosafety Conference,	Poly (propylene fumarate) based scaffold	2020
Tehran University of Medical Sciences, Tehran,	for cartilage tissue engineering	
Islamic Republic of Iran.		
The 2nd Nanomedicine & Nanosafety Conference,	Poly (caprolactone) based nanofibers for	2020
Tehran University of Medical Sciences, Tehran,	bone tissue engineering	
Islamic Republic of Iran.		

COMPUTER EXPERIENCE

Microsoft Office, ChemDraw, CorelDRAW, OriginLab, GraphPad.

Languages

English, Azerbaijani, Persian, Turkish

Publication

1) Amiryaghoubi SN, Babazadeh M. Novel polymeric prodrugs of valproic acid as anti-epilepsy drugs: Synthesis, characterization and in-vitro evaluation. Tropical Journal of Pharmaceutical Research. 2015;14(7):1183-9.

2) Amiryaghoubi N, Pesyan NN, Fathi M, Omidi Y. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. International journal of biological macromolecules. 2020;162:1338-57.

3) Amiryaghoubi N, Fathi M, Pesyan NN, Samiei M, Barar J, Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Medicinal research reviews. 2020;40(5):1833-70.

4) Amiryaghoubi N, Fathi M, Barzegari A, Barar J, Omidian H, Omidi Y. Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration. Materials Today Communications. 2021:102097.

5) Amiryaghoubi N, Pesyan NN, Fathi M, Omidi Y. The design of polycaprolactonepolyurethane/chitosan composite for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021:127895. 6) Amiryaghoubi N, Fathi M, Adibkia K, Barar J, Omidian H, Omidi Y. Chitosan-Based Biomaterials: Their Interaction with Natural and Synthetic Materials for Cartilage, Bone, Cardiac, Vascular, and Neural Tissue Engineering. Engineering Materials for Stem Cell Regeneration: Springer; 2021. p. 619-50.

7) N. Amiryaghoubi, M. Fathi, J. Barar, H. Omidian, Y. Omidi, Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering, Journal of Drug Delivery Science and Technology (2022) 103360.

8) Samiei M, Fathi M, Barar J, Fathi N, Amiryaghoubi N, Omidi Y. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. Journal of Drug Delivery Science and Technology. 2021:102600.

9) Fathi M, Abdollahinia ED, Amiryaghoubi N, Omidian H, Omidi Y. Magnetic nanoparticle-polymer nanohybrids. Magnetic Nanoparticle-Based Hybrid Materials: Elsevier; 2021. p. 183-208.

10) N. Amiryaghoubi, M. Fathi, J. Barar, Y. Omidi, Hydrogel-based scaffolds for bone and cartilage tissue engineering and regeneration, Reactive and Functional Polymers (2022) 105313.

11) M. Samiei, E.D. Abdollahinia, N. Amiryaghoubi, M. Fathi, J. Barar, Y. Omidi, Injectable thermosensitive chitosan/gelatin hydrogel for dental pulp stem cells proliferation and differentiation, BIOIMPACTS, (2022).