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Parallel Processing with Big L)
Data

Behroor Parhami

Department of Electrical and Computer
Engineering, University of California, Santa
Barbara, CA, USA

Synonyms

Big-data supercomputing: Computational needs
of big data

Definition

Discrepancy between the explosive growth rate in
data volumes and the improvement trends in pro-
cessing and memory access speeds necessitates
that parallel processing be applied to the handling
of extremelv large data sets.

Overview

Both data volumes and processing speeds have
been on exponentially rising trajectories since
the onset of the digital age {Denning and Lewis
201 6), but the former has nsen at a much higher
rate than the latter. It follows that parallel pro-
cessing is needed to bridge the gap. In addition
to providing a higher processing capability to

deal with the reguirements of la
parallel processing has the potent
the “von Meumann bodtleneck™ (Ma
sometimes referred to as “the
because of its tendency to hinde
progress of a computation, when op
be supplied to the processor at the
(McEee 2004; Wulf and McEee |
processing algorithms and architec
1999 have been siudied since
way of improving computer syste:
and. more recently, as a way of ¢
exponential rise in performance

the power consumption in check {C
Crepner and Kowalik 2006; Koome

Trends in Parallel Processing

Interest in parallel processing H
1960 with the design of [LLIAC
recognized as the world’s first s
(Hord 2013). The &64-processor

built and operated by Burroughs Co
a single-instruction-stream., multipl
architecture, SIMD for short {Fly
1946), which uses a single instruct
unit, with each instruction appli

data items simultanecusly. The ot
of parallel architectures Is know
in which there are multiple inst

in addition to multiple data strea
architectural category has a great de
in terms of how memory is imple
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A Simple Low Cost Parallel Architecture
for Big Data Analytics
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mockels e well as some gmph Wi atkempl to ldenkiry
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when the dain =l k& analyred kor o shori Ehme

Ieder Terms—Faralkel anchibesinre, Big, Do, Parnlkel Process-

Ing-

L INTRODUCTION

There hes been a sgnificant rising in dais volumes and
processing, speeds for the lost two decades However, dain
valomes beve risen ab & moch higher rate than ihe processing
geeds. Though thers are powerful machines with a kol of
memory and disk space, it is costhy and mey fail when the
doia volume is boge. Thepefore, processing and analyzing
large: volumes of dim becomes non-feasible using a radiconal
szrial approach. Hence, paralle] processing emenges to solw the
problem Parallel processing allows a problem o ke subdivided
mmmuﬂer]:lmﬂ:ntcmbl:-h'edfnbLIhm]:mmg'lht

some varianks of paralke] processing, it is often mzomed doi te
same et of operations must ke perfarmmed in each processing
machire with shared-nothing architeciore. For the ouipm, most
muodels send e partial ootpot 1o te maser node and combine
e results 1o get e fimal resah

In this paper, our contributions are the followimg (1) We
propose & smple parall=] archiiecrure thal can be msed for
parallel processing in big dmia anabdics (2} Cur archiechae
does not depend on amy external complicaied file systems,
ratber we do e partition dymamically and mo on commodi
hardw e, Ve nse the file sysiem “a 8™ (3) Oor archike cooe
iz cheap. 25y o sot up. more machines can be pdded eosily,
and e is no oeed bo maiman the partitions

This is m ouxlice of the est of this anicle. Section 2 is a
referenoe section Section 3 preseris our theopetical wearch
coniributions whene we preeat our pamllel archiecare and
how it comply with machine learning problems. Section 4
presems an experimenial evaloition comparing oor soltion o
tte staie of the arl anahbtic sysiems We discoss closely relaed
work in Section & Conclusions and directions fiar futore work
are discossed in Section &

II. PRELIMINARIES

In this secton, we inmoduce e definitions and symbols
ued thronghoo the paper
A I'mpeu Dlawr Sev and Ompss Solwion

We start by defining the input domm s=t as 0. Here, I is
o malrix having n rows and a different oumber of colums,
depending if the problem comes from machine kearning or
griphs Marix [} can be either derse or sparse. We define the
problem solution in @ gereralized manner as & For machine
lzarning problems, 8 is a mode] cormisiing of & lisl of matrices
and assoriated meirics and for graphs, B is genemally & vechor
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Parallel DBMS

A parallel database management system seeks to improve performance through
operational parallelization such as data loading, indexing, and query evaluation.

-

.

Has been able to run database systems on clusters of SN nodes since the 1980s. These systems support standard

SQL spreadsheets, and as a result, the fact that data is distributed across multiple systems is obscured from the
end user.

p
—L All or most of the tables are divided into nodes in a cluster

e

-

The system uses an optimizer to convert SQL statements to a query map whose
execution is distributed across several nodes.
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https://ieeexplore.ieee.org/document/7547948

What is Big Data?(Cont.)

Author’s name Definition

Big data are massive in size and
cannot fit into Excel spreadsheets
comprising approximately 16 000
columns and 1 million rows.
Big data cannot be loaded into
Havens etal. local storage devices (computer
memory).
Big data cannot be easily
Fisheretal.  processed and managed in a
straightforward manner.

Batty

Big data  have = several
The State Council characteristics, such as high
of People’s application value, fast access
Republic of China speed, large volume, and multiple
types.
Big data have large volume,
variety, and velocity that demand
cost effectiveness and are helpful
in decision making.

Bayer and Laney

% Ref:March 2022


https://ieeexplore.ieee.org/document/9663258

" vowme

Characteristics
. * Terabytes
of big data + Records
* Tables, files
* Transactions

% Ref: January 2022


https://www.researchgate.net/profile/Dimitrios-Papakyriakou/publication/357999172_Data_Mining_Methods_A_Review/links/61eab4768d338833e38566f7/Data-Mining-Methods-A-Review.pdf

Data stores

Column

Document

Data
processing

Graph

Key-Value

Programming

Cassandra, HBase, Hypertable

MongoDB, JSON ODM, CouchDB

Neo4dj, ArangoDB, Bigdata

DynamoDB, Azure Table Storage,
Cassandra, PNUTS, Berkeley DB

(a)
SQL-like  Hive, Shark, Scope, Pig,

Input

Dremel, AsterixDB

User-defined |
method Hadoop, Spark, Flink,

Dryad, GraphlLab, Pregel,
Storm, S4

Batch  Hadoop, Spark, Dryad, Flink,

Nephele, Dremel, AsterixDB

Stream ¢, arm. S4
Graph  GraphlLab, PowerGraph,

Pregel, Hama

ML Petuum, MLBase, Mahout

(b)


https://ieeexplore.ieee.org/document/7547948

Map Reduce

MapReduce is a parallel programming model for processing data on clusters that
consists of two main phases including the mapping phase (Map) and the reduction
phase (Reduce).

This framework divides the big data into subcategories, then divides them into different
machines, then combines the separate processes into the final result.
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Map Reduce



https://ieeexplore.ieee.org/document/7547948

Example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 Bear, 2
Deer, 1 Bear, 1
Deer Bear River Bear, 1
River, 1
/ Car, 1
Car, 1 Car, 3 Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 Deer, 2
Deer, 1
Deer, 1
Deer Car Bear Car, 1 /
Bear, 1 River, 1 River, 2
River, 1



https://ieeexplore.ieee.org/document/7547948

Map Radius implementations

Apache Hadoop Google
MapReduce MapReduce

Amazon Elastic
Mapreduce



https://ieeexplore.ieee.org/document/7547948

Table 1 comparison of Parallel DBMSs and MapReduce

Parallel DBMS MapReduce
Schema v Not naturally
Index v Not naturally
Programming Declarative Imperative
(SQL) (C++, Java, ...)

Optimization | Compression, Column storage, ..

Not naturally

Pre-parsing v Not naturally
Flexibility Not naturally v
Fault tolerance Transaction-level Task-level

\


https://ieeexplore.ieee.org/document/7547948
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High Level Architecture of Hadoop

MapReduce layer

HDFS layer

Master Node Slave Node Slave Node
r.-.....“m--—.—-—. -“-“-“-‘1
]

;
; i
| == 1 i
’ | |
! JobTracker '
i
I ————— I e BT 1
i :
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HDFS Data Distribution

>

Node A Node B Node C Node D Node E

Input File

‘ el
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APACHE
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Big data benchmark

Measuring
and
comparing big| Being data-
data systems centric
and
architecture

Diverse and
representative
workloads



https://ieeexplore.ieee.org/document/7547948

Table 3 The Summary of BigDataBench. Adaptation With the Permission of Wang et al. [78]

Appllcgtlon Application Workloads Data Types S Software Stacks
Scenarios Type Source |
Sort
Micro Offline Grep Text
Benchmarks | Analytics WordCount Sl HACaO bpatk, Ntk
BFS Graph |
Basic Read
Datastore Online Service Write Semi-structured | Table Hbase, Cassandra,
: MongoDB, MySQL
Operations Scan |
Select Query
Relational Realtime Aggregate Impala, MySQL, Hive,
Query Analytics Query S{iconed Table | opark
Join Query
Online Services | Nutch Server
giarizl; Offline Index Un-structured — —
& | Analytics PageRank Graph | Hadoop, Spark, MPI
Online Services | Olio Server _Apache+MySQL
Social . Kmeans
Network Ofﬂmc. Connected VIS axeph Hadoop, Spark, MPI
Analytics
Components _
Online Services | Rubis Server | Structured Table | Apache+JBoss+tMySQL
E-commerce | Offline C.O lla?orative
. Filtering Semi-structured | Text Hadoop, Spark, MPI
Analytics :
Naive Bayes

T


https://ieeexplore.ieee.org/document/7547948

Conclusion

Big data-processing systems have been widely researched by academia and industry. Based on the
processing paradigm, we categorize those systems into batch, stream, graph, and machine learning
processing. The paper first introduced the basic framework of MapReduce and its outstanding

features as well as deficiencies compared to DBMSs. According to the deficiencies, we discussed the

extensions and optimizations for MapReduce platform, including support for flexible dataflows,

efficient data access and communication, parameter tuning, as well as energy. We then surveyec

other batch-processing systems, including general-purpose systems Dryad, Nephele/PACT and
Spark. SQL-like systems involved in this paper are Hive, Shark, SCOPE, AsterixDB, and Dremel. For
stream processing systems, Storm and S4 are introduced as representatives. Scalability is one of the
ML algorithms bottlenecks. We then discussed how graph-centric systems like Pregel and GraphLab,

and ML-centric systems like Petuum, parallelize the graph and ML model, as well as their distinctive
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