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A parallel database management system seeks to improve performance through 

operational parallelization such as data loading, indexing, and query evaluation. 

Has been able to run database systems on clusters of SN nodes since the 1980s. These systems support standard 

SQL spreadsheets, and as a result, the fact that data is distributed across multiple systems is obscured from the 

end user. 

All or most of the tables are divided into nodes in a cluster 

The system uses an optimizer to convert SQL statements to a query map whose 

execution is distributed across several nodes. 
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MapReduce is a parallel programming model for processing data on clusters that 

consists of two main phases including the mapping phase (Map) and the reduction 

phase (Reduce). 

This framework divides the big data into subcategories, then divides them into different 

machines, then combines the separate processes into the final result. 
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Example 
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Conclusion 

Big data-processing systems have been widely researched by academia and industry.  Based on the 

processing paradigm, we categorize those systems into batch, stream, graph, and machine learning 

processing. The paper first introduced the basic framework of MapReduce and its outstanding 

features as well as deficiencies compared to DBMSs. According to the deficiencies, we discussed the 

extensions and optimizations for MapReduce platform, including support for flexible dataflows, 

efficient data access and communication, parameter tuning, as well as energy. We then surveyed 

other batch-processing systems, including general-purpose systems Dryad, Nephele/PACT and 

Spark. SQL-like systems involved in this paper are Hive, Shark, SCOPE, AsterixDB, and Dremel. For 

stream processing systems, Storm and S4 are introduced as representatives. Scalability is one of the 

ML algorithms bottlenecks. We then discussed how graph-centric systems like Pregel and GraphLab, 

and ML-centric systems like Petuum, parallelize the graph and ML model, as well as their distinctive 

characteristics.  






