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ABSTRACT
A domino Sonogashira coupling of 2-chloro-3-(chloromethyl)quinolines and
terminal acetylenes and then dimerization is described. This palladium-cat-
alyzed reaction gave novel dimer quinolinium salts in good to high yield.
Based on empirical evidence, a plausible mechanism was provided. The
produced quinolinium salt are amenable to further synthetic elaborations
such as reactions with phenoxide and thiophenoxide to yield the corre-
sponding ether and thioether.
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Introduction

Heterocyclic compounds with quinoline subunits are among several compounds of interest due to
their pharmacological properties as evidenced by the occurrence in alkaloids molecules.1 So far 15
approved anticancer drugs include the quinoline core.2

The triple bond functional group has a special place in the synthesis of different heterocyclic
compounds.3 Extensive efforts have been devoted to develop synthetic routes to incorporate triple
bond transformations into complex heterocyclic compounds. Over the past years, metal-catalyzed
Sonogashira coupling reaction of terminal alkynes, which is a synthetic tool for C-C bond formation,
has been widely studied.4 Several reports starting from alkynylation of 2-chloroquinolines resulted in
poly-heterocycles such as: benzo[b]pyrazolo[5,1-f][1,6]naphthyridines,5 3-phenylbenzo[b][1,6]naph-
thyridines,6 pyranoquinolinones,7 benzo[b]oxazolo[2,3-f][1,6]naphthyridine,8 1,2-dihydrobenzo[1,6]
naphthyridines,9 and quino[2,3-b]carbazoles.10

In this context, Gao groups have developed a practical strategy for the construction of natural
products containing indolizinone or quinolizinone scaffolds and their analogs, which proceeded via a
cascade exo hydroamination followed by spontaneous lactamization.11 They applied this method to
the synthesis of camptothecin, 22-hydroxyacuminatine, oxypalmatine, norketoyobyrine, naucleficine
and nauclefine.11 Verma and coworkers have established an iodine-catalyzed reaction regarding to
the synthesize of 4-iodo-pyrano[4,3-b]quinolines and ortho-alkynyl esters from ortho-alkynyl alde-
hydes.12 Interestingly, Samala et al. have disclosed that four, five and six membered cyclic amino
acids reacted with 2-alkynyl aryl aldehyde to yield the corresponding 1H-benzo[g]indoles, tetrahydro-
benzo[h] quinolines, and naphtho[1,2-b]azepines.13 In contrast condensation of 2-alkynyl pyridine/
quinoline aldehydes with proline furnished the corresponding hexahydropyrrolo[2,1-b]oxazoles.

Choosing a versatile starting material can provide access for the synthesis of various useful
molecules. During the past two decades 2-chloroquinoline-3-carboxaldehydes have gained more
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attraction as starting material to synthetic chemists to construct the diverse quinoline-based
molecules.14

In our further research on quinolines chemistry,15 herein we wish to report palladium cata-
lyzed Sonogashira reaction followed by a subsequent dimerization of 2-chloro-3-(chloromethyl)-
quinolines 1.

Results and discussion

We prepared 2-chloro-3-(chloromethyl)-quinolines 1 as starting material from acetanilides with
different substituents as outlined in Scheme 1.16

A series of experiments were performed with 2-chloro-3-(chloromethyl)-8-methylquinoline 1a
and phenylacetylene 2a as the model reaction. Pleasingly, this reaction in the presence of PdCl2,
PPh3 and TEA in toluene, gave 3a instead of the expected simple Sonogashira coupling product
3’a (Scheme 2).

Thus, we chose to optimize the model reactions with different palladium sources, ligands,
bases, solvents, and temperatures. The reaction with PdCl2, PPh3, TEA in CH3CN under air
atmosphere gave no product but under N2 atmosphere, even at room temperature, produced 3a
in 70% yield (Table 1, entries 1-3). Elevating the temperature to 80 �C in CH3CN increased the
yield to 88% (Table 1, entry 4). Screening of solvents revealed that CH3CN is the optimal choice
yielding a high yield within a short reaction time(Table 1, entries 5-8). This may be due to the
fair interaction of lone pair of nitrogen in acetonitrile with Pd. Using alternative catalytic systems
such as: Pd(OAc)2, Pd(OAc)2/CuI or PdCl2/CuI showed no significant difference with PdCl2
(Table 1, 9-11). Application of P(CycHex)3, TMEDA, or L-proline as ligands considerably dimin-
ished the yields of the desired product 3a (Table 1, entries 12-14). TEA as organic base was more
efficient than the inorganic bases evaluated (Table 1, entries 15-18).

Overall, the best yield was achieved by performing the reaction with PdCl2, PPh3, and Et3N in
CH3CN at 80 �C under nitrogen atmosphere for 3 h (Table 1, entry 4). Our next task was to

Scheme 1. Synthesis of starting materials 2-chloro-3-(chloromethyl)quinolines 1.

Scheme 2. Sonogashira coupling of 1a and 2a and then dimerization.
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evaluate the scope of this optimized methodology for a range of 2-chloro-3-(chloromethyl)quino-
lines 1 and terminal acetylenes (Table 2). Quinoline 1 containing methyl, methoxy, chlorine and
bromine substituents reacted properly with phenylacetylene to furnish corresponding dimers 3a-f
(Table 2, entries 1-6). Furthermore, aliphatic acetylenes were also well tolerated in the synthesis
of corresponding salts 3g-l in good to high yields (Table 2, entries 7-12). The scope of the

Table 1. Optimization of the reaction condition.

Entry Solvent Base Catalyst/ Ligand Time(h) Yielda,b (%)

1 CH3CN TEA PdCl2 24c, d –
2 CH3CN TEA PdCl2/ PPh3 24c, d –
3 CH3CN TEA PdCl2/ PPh3 24 70c

4 CH3CN TEA PdCl2/ PPh3 3 88
5 DMF TEA PdCl2/ PPh3 6 70
6 DMSO TEA PdCl2/ PPh3 9 66
7 Toluene TEA PdCl2/ PPh3 12 30
8 CH2Cl2 TEA PdCl2/ PPh3 15 30
9 CH3CN TEA PdCl2/ CuI/ PPh3 8 35
10 CH3CN TEA Pd(OAc)2/ PPh3 5 76
11 CH3CN TEA Pd(OAc)2/ CuI/ PPh3 8 65
12 CH3CN TEA PdCl2/ P(Cy)3 8 27
13 CH3CN TEA PdCl2/ TMEDA 10 20
14 CH3CN TEA PdCl2/ L-proline 10 30
15 CH3CN K2CO3 PdCl2/ PPh3 10 50
16 CH3CN Cs2CO3 PdCl2/ PPh3 9 45
17 CH3CN t-BuOK PdCl2/ PPh3 24 23
18 CH3CN t-BuONa PdCl2/ PPh3 24 27
aAll reactions were carried out using 1a (1mmol), 2a (1.2mmol), catalyst (4mol%), ligand (8mol%), base (2mmol), and solvent
(2.0mL) and stirred under N2 atm., at 80 ˚C unless otherwise noted.

bIsolated yields.
cAt room temperature.
dAir atmosphere.

Table 2. Synthesis of various derivatives of dimer 3a-3n.

.

Entry R1 R2 R3 Product Yielda (%)

1 H Me Ph 3a 88
2 Me H Ph 3b 86
3 Cl H Ph 3c 75
4 H H Ph 3d 85
5 OMe H Ph 3e 83
6 Br H Ph 3f 80
7 Me H PhOCH2- 3g 78
8 H H PhOCH2- 3h 84
9 H Me PhOCH2- 3i 85
10 H H 4-Me-PhOCH2- 3j 79
11 Me H 4-Me-PhOCH2- 3k 85
12 H H 4-Br-PhOCH2- 3l 86
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reaction was also expanded to include 2-chloro-3-(chloromethyl)benzo[h]quinoline as a coupling
partner; this produced compounds 3m and 3n in 81%–87% yields respectively with phenylacety-
lene and propargyl phenoxide (Table 2).

Investigating the conversion of the produced salts 3 into more complicated quinoline deriva-
tives was performed by the reacting 3b with phenol and thiophenol under basic conditions which
afforded the corresponding ether 4a and thioether 4b (Scheme 3).

The proposed mechanism for the reaction is shown in Scheme 4. The general mechanism
starts from the in-situ generation of the Pd(0) complex with PPh3, followed by the oxidative
addition of the Ar-Cl bond of the quinoline heterocycle to form I. Addition of terminal
acetylene to intermediate I assisted by Et3N generated the complex II which, by reductive
elimination, led to compound III. Finally, dimerization of III via nucleophilic substitution of
nitrogen of one molecule to Csp3-Cl of another one formed the salt 3 (Scheme 4).

With regards to investigating the mechanism described above, reactions in Scheme 5 were per-
formed. Treatment of 2-chloro-3-chloromethylquinoline with Et3N in refluxing CH3CN did not
yield product even after 24 h (Scheme 5). This may be due to the existence of an electron with-
drawing Cl in the 2 position of quinoline which reduced activation of nitrogen toward nucleo-
philic substitution. In addition, 3-(chloromethyl)-2-(phenylethynyl)quinoline (B), which has
alkyne as electron releasing group, in the presence of Et3N tended to dimerize to 4d. Notably
increasing the temperature to reflux converted B to unidentified polymer.

Scheme 3. Nucleophilic substitution on aliphatic methylene chloride of compound 3b.

Scheme 4. The plausible mechanism for the synthesis of 3.

4 Z. GHOLAMI-KOUPAEI ET AL.



Conclusions

In summary, because of the importance of quinoline core and the ability of 2-chloro-3-(chloro-
methyl)quinolines to expand into more complex compounds, the primary materials of 1 were
subject of reaction with terminal alkynes in a Sonogashira reaction. Surprisingly, in addition to
the Sonogashira coupling, the corresponding adducts were dimerized in-situ to afford novel
attractive molecules 3. Interestingly, the product 3b reacted efficiently with phenoxide and thio-
phenoxide to yield the corresponding ether and thioether respectively.
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