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Abstract

Functionally Graded Material (FGM) are materials that show dif-
ferent properties in different areas due to the gradual change of chem-
ical composition, distribution and orientation, or the size of the re-
inforcing phase in one or more dimensions. In this paper, the free
vibrations of a thin cylindrical shell made of functionally graded ma-
terial have been investigated. In order to investigate this problem,
the first-order shear theory has been used, using relations related to
propagation of waves and fluid-structure interaction. Also, due to the
rotational inertia of first-order shear deformation and the fluid veloc-
ity potential, dynamic equation of functionally graded cylinder shell,
containing current is obtained. Convergence of the solutions obtained
from this method in different modes of boundary conditions as well as
different geometric characteristics for the submerged cylinder and re-
sults of other studies and articles is showed and the effects of different
parameters on the FGM cylindrical shell frequencies for the classical
boundary conditions (Compositions of simple, clamped and free bound-
ary conditions) are investigated against the ratio of length to radius
and the ratio of thickness to radius for different values of exponential
power (exponential order) of FGM material. The results show that the
more density of the fluid in which the cylinder is submerged is lower;
the frequency values will be higher. Also, by examining the different
fluid velocities, it can be seen the effect of thickness change so that in-
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creasing thickness causes the increase of effect of speed on the natural
frequency reduction especially in higher modes.

AMS subject classifications:
Keywords: Functionally graded materials; natural frequencies of cylin-

drical shell; First order shear deformation theory; Fluid-structure interaction;
nonlinear vibrations; propagation method.

1 Introduction

In recent years, with the development of high-powered engines for aerospace
industries, turbines, reactors and other machines, there is a need for materials
with higher thermal resistance and more resistant dynamically. FG materials
are in fact composite materials in which the composition of materials or mi-
croscopic structure is changed in such a way that the mechanical and thermal
properties of the structure made of these materials are ideal for applications
that include high thermal gradients from thermal structures in advanced air-
craft and aerospace engines and computer circuit boards. According to the
many variables that affect the design of functionally graded materials, the
full exploitation of the potential of FG materials requires the development
of appropriate modeling methods for their response to the combination of
mechanical and thermal loads. Emergence and entry of functionally graded
materials, by defining the various modes of the existing compounds of human-
made, the possibility of the deliberate construction is provided according to
these materials. This possibility was proposed as a concept by Bohr and
Dowz in 1972, and the exploitation of these materials in individual efforts in
the 1950s, 60s, and 70s, and the early 1980s was by many researchers and
prominently in the United States. Then Japanese require these materials to
grow and progress in space research to focus on the spaceship project that the
result was that many of the various hard and precise requirements was made
for increasing the temperature of the components of hybrid and gradually
microstructural structures [24, 18, 4, 11].

Robinson and Palmer [22] have carried out a modal analysis of a rectan-
gular sheet suspended on fluid, they have obtained the response for a time-
harmonic point load, but their analysis can be cited for a limited number of
initial frequencies. Kovak [17] examined the free vibration of a rectangular
sheet suspended on infinite fluid. The basis of this analysis is based on the
Rayleigh-Ritz method and the Green’s function. Huddara and Kaw [10] have
obtained an approximate expansion for the modal analysis of a rectangular
sheet of a curved side, horizontally immersed in the fluid, empirically and
analytically. Jao and Chang [36] have studied the vibrations of a rectangular
sheet that is in contact with the fluid in one side using the Rayleigh-Ritz
method. The fluid is in contact with the sheet inside a semi-infinite rigid
reservoir. Liang et al. [19] proposed a simple method for obtaining natural
frequencies and the shape of the immersed sheet of a clamped side based on
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empirical formulas. Yadkirin et al. [31] have analyzed an immersed rectan-
gular sheet in fluid with ratio of different aspects. The sheets analyzed in
their work are with a clamped edge and other edges free. Jiang et al. [14]
presented an analytical method for estimating the frequencies of two specific
sheets with finite fluid. They used polynomial functions for analysis and, by
expanding the fluid velocity potential, satisfied the boundary conditions of
the fluid with finite Fourier extension. Tarjoman and Carlo [6] studied the
sheets of a curved side immersed in fluid and studied the effect of the length-
to-width ratio. Jao and Liu [37] presented a three-dimensional theory method
for dynamically analyzing a flexible rectangular reservoir filled with fluid, us-
ing a combination of Rayleigh-Ritz methods and Galerkin’s method. Func-
tionally graded materials are heterogeneous microstructure materials whose
mechanical properties change smoothly and Continuously from one surface
to another.

The common type is the combination of ceramic and metal. These materi-
als are obtained by mixing ceramic and metal powder. The advantage of using
these materials is that they are able to withstand extreme temperatures and
temperature differences, and are extremely corrosion-resistant and have high
resistance to fracture. At present, these materials are used for structures that
are resistant to high temperatures. This type of material is used because of
its specific features in thermal shields of rockets, chemical tanks and abrasive
environments. Considering the importance of functionally graded materials
in the industries, many researchers investigate the dynamic behavior of this
type of material. Hosseini Hashemi and colleagues [12] have investigated
and analyzed the free vibration of a rectangular sheet of functionally graded
material with a relatively thick based on the first order shear deformation
theory. In their study, the natural frequency of the sheet for 6 modes of
combining different boundary conditions of a sheet with two simple parallel
edges and other edges, a combination of simple, free and clamped boundary
conditions using a precise solution is obtained. One of the benefits of this
research is the high accuracy of the proposed method. Mohammad Talha
and Sinagh [30] have studied the vibration and static analysis of functionally
graded material sheets using the third-order shear deformation theory, but
with the difference that in this theory, little corrections in the transverse dis-
placement of these plates is done by the limited element method. Jao et al.
[35] provided an analysis for the free vibration of the plates of functionally
material. He also used the first-order shear deformation theory to calcu-
late shear strain and inertial rotation. The special equations are converted
to energy functions using the Ritz method and then solved. Hosseini and
Hashemi et al. [13] presented a closed-loop solution based on the free vibra-
tion analysis of thick sheets of functionally graded materials based on the
third-order shear deformation theory. The boundary conditions used are two
simple parallel supports. Khorshidi [15], investigates the effect of the hydro-
static pressure of vibration of a rectangular coupler sheet with a fluid. Ho and
Zheng studied the two-branch phenomenon in symmetric nonlinear vibrations
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of functionally graded circular sheet, considering the effects of temperature
and harmonic transverse force. Khorshidi and Farhadi, [16] have studied the
free vibration of rectangular composite sheet in contact with limited fluid.
Abolghasemi et al. [1] analyzed the buckling of rectangular sheets under un-
even plate load based on the first order shear deformation theory and used
Galerkin method for solving equations of stability for a sheet with simple
boundary conditions. Ghasemi et al. [8] studied buckling behavior of conical
reinforced composite shells under axial load and calculated them using the
Ritz method. Ebrahimi et al. [5] examined the vibrations of FGM beams
in thermal loading. Guo XY and Zhang W [9] studied on Static bending,
elastic buckling, free and forced vibrations, composite-reinforced fiber struc-
tures have been investigated. More recently, Song et al. [29] have examined
polymer nanoparticle sheets on the free and compulsory vibrations which op-
erate in a categorized manner, in which GPLs are non-uniform and dispersed
in matrices. Mirza’i and Kiani [20] examined an iso-geometric formulation
for thermal analysis of shaking GRC layers with different compositions in
different boundary conditions; they used the assumptions of Shen and his
colleagues [25, 28, 26, 27, 32]. Benchouaf and Hassan Boutyour [2] studied
on the coupled nonlinear static and dynamic problems are transformed into
a sequence of linear ones solved by a finite-element method. Benferhat and
et al. [3] studied on the effect of foundation stiffness parameters presented
for thick to thin plates and for various values of the gradient index, aspect,
and the side-to-thickness ratio.

In this paper, using the first-order shear deformation theory, the vibra-
tion of sheets made of functionally graded materials in contact with fluid has
been studied. In order to examine the displacements and the vibrational be-
havior of the sheet, the boundary conditions are considered differently. The
results are obtained using the Comsol software for FSI and in the results of
numerical results, the effect of volumetric power factor parameters, different
geometric conditions, applying fluid to the sheet at various heights, applying
different velocities and obtaining the natural frequencies, checking the differ-
ent boundary conditions on the natural frequency of the sheet in contact with
the fluid with the Parametric sweep tool, has been investigated and analyzed
for several important modes, including the volume ratio and fluid height, as
well as to verify the accuracy of the results, numerical results are compared
with the results available in references.

2 Statement of the problem

The first step in this research is the modeling of a cylindrical shell consisting
of functionally graded materials (FGM). For this modeling, in the first part,
the properties of the materials studied should be considered on the basis of
theories related to functionally graded materials. For this purpose, a cylinder
from functionally graded materials with uniform thickness with length L and
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thickness H and width R is considered that this sheet will consist of ceramic
and metal. In all equations, there is the assumption of linear behavior of
materials, displacements, and strains, as well as the elastic properties of
materials are in line with the thickness of the variable plate and according
to the volume ratio rule. To solve using finite element solving method, a
cylindrical shell model was first drawn in the Comsol software, which is shown
in Fig 1 of the cylindrical shell model.

Figure 1: Functionally graded and German cylindrical geometry from cylindrical

thickness

The next step in this research is the modeling of the effects of the fluid-
structure interaction, which this paper is modeled using the coupling motion
equations of fluid motion of this interaction. Non-slip and incompressible
fluid and the incompressible fluid flow are isotropic and non-rotary. Limited
software can be solution on the condition of observing determinants in the
analysis. Thin cylindrical shell is uniformly considered. Equations governing
the dynamical behavior of cylinder from the functionally graded material in
the presence of fluid.

3 Formulation

Also the resultant material properties D of a functionally graded material
are functions of material properties and volume fractions of the constituent
materials and can be modeled as follows [33]:

D =
l∑

k=1

DkVfk (1)

whereDk and Vfk, respectively, represent the material properties and volume
fraction of the constituent material k. The sum of volume fractions of all the
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constituent materials equals unity, i.e,

l∑
k=1

Vfk = 1 (2)

For an cylindrical shell with uniform thickness h and with the middle surface
taken as reference surface, the volume fraction is expressed as [33]:

Vf =
( z
h
+0.5

)g
(3)

where g is the power law index and is taken to be 0 ≤ g ≤ ∞. Since this
paper uses two materials for the construction of a cylindrical shell, three main
mechanical quantities, Module Yang (E), Poisson ratio (υ) and density (ρ),
can be extracted as follows [33]:

Eo = (E2 − E1)
(
z
h + 0.5

)g
+ E1

υo = (υ2 − υ1)
(
z
h + 0.5

)g
+ υ1

ρo = (ρ2 − ρ1)
(
z
h + 0.5

)g
+ ρ1

(4)

In this case, we know that in the z = −h/2 condition, the Young’s modulus
and the Poisson coefficient are respectively: υ = υ1 , E = E1, and also
the density is equal to ρ = ρ1, and in the conditions where z = h/2 Yang
modulus and Poisson coefficients are respectively: υ = υ2 ,E = E2 and also
the density equal to ρ = ρ2, which represents the fact that, at the inner
surface of the cylinder, the property of the constituent is corresponding with
the first material, and at the outer surface of the cylinder, the mechanical
properties are the properties of second material.

The thin sheet problem is a 3D problem which, by considering the plate
stress condition becomes a two-dimensional problem, for example, the stress
and strain of components in the Z direction are negligible. This theory is
used to calculate the effect of shear forces on thick shell frequencies. Using
Love’s thin shell theory, the equation of motion of this cylindrical shell is
shown as follows [23]:

∂Nx

∂x + 1
R

∂Nxθ

∂θ = ρT
∂2ux

∂t2

∂Nxθ

∂x + 1
R

∂Nθ

∂θ + 1
R

∂Mxθ

∂x + 1
R2

∂Mθ

∂θ = ρT
∂2v
∂t2

∂2Mx

∂x2 + 2
R

∂2Mxθ

∂x∂θ + 1
R2

∂2Mθ

∂θ2 − Nθ

R = ρT
∂2w
∂t2

(5)

Where Nx, Nθ and Nxθ are the force components in the three directions and
Mx , Mθ and Mxθ are the components of the moment in the three main
directions. Using the Love’s theory for shells, the equations for strains and
curves of the reference page will be as follows [33]:
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(Nx, Nθ, Nxθ) =

∫ h/2

−h/2

(σx, σθ, σxθ)dz

(Mx,Mθ,Mxθ) =

∫ h/2

−h/2

(σx, σθ, σxθ)zdz

ρo =

∫ h/2

−h/2

ρ′dz

(6)

There, the Qij ’s are reduced stiffnesses for an thin cylindrical isotropic shell
defined as[33]:

Q11 =
E

1− υ2
(7)

Q22 =
E

1− υ2
(8)

Q12 =
υE

1− υ2
(9)

Q11 =
E

2 (1− υ)
(10)

Here E and υ respectively represent the Young’s coefficient and Poisson’s
coefficient. By placing the above in equations in the matrix of force and
momentum: L11

L12

L31

L12

L22

L31

L13

L23

L31

 u
v
w

 =

 00
0

 (11)

In the above equations, Lij(i, j = 1, 2, 3) represents the differential op-
erator relative to x and θ. Since the velocity field for a fluid outside the
shell only contains the effect of pressure and no flow outside the tube is ob-
served, using the cylindrical coordinate system (x, φ, r), the acoustic pressure
equation satisfies the equation below [23]:

1

r

∂

∂r

(
r
∂Pa

∂r

)
+

1

r2
∂2Pa

∂φ2
+

∂2Pa

∂x2
=

1

c2
∂2Pa

∂t2
(12)

In the upper equation Pa shows the acoustic pressure and c indicates
the speed of sound inside the water. The coordinates x and φ in the above
equations are in accordance with the coordinates of the cylinder.

In this method, the modal displacement in shell equations can be written
using the wave propagations method and the longitudinal wave number (ks),
as well as by using the parameter of the wave number in the direction of the
environment (n) as follows [23]: u (x, θ, t) = A cos (nθ) exp (iωt− iksx)

v (x, θ, t) = B sin (nθ) exp (iωt− iksx)
w (x, θ, t) = C cos (nθ) exp (iωt− iksx)

(13)
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The coefficients A, B and C denote the wave amplitudes respectively in
the x, θ and z directions, respectively. In these equations, n is the number
of circumferential waves and, ks is the axial wave number. It should be
noted that by changing the boundary conditions, the number of longitudinal
waves varies. ω in the above equations shows the natural frequency for the
cylindrical shell, and to analyze the waveforms generated, the peripheral wave
number is used.

It is assumed that the fluid and shell are in contact at any moment, and
the fluid has a flow with velocity U , which will also show the effects of the
emission of waves in both fluids.

The associated form of the acoustic pressure field in the contained fluid,
which satisfies the acoustic wave Eq. (9), can be expressed in the cylindrical
coordinate system, associated with an axial wave number ks, radial wave
number kr and circumferential wave number n, and is given as [23]:

P = Pacos (nθ) Jn (krr) exp (iωt− iksx) (14)

where Jn is the Bessel function of first kind with order n. For the fluid
outside of the surface and the cylindrical shell, we have [23]:

−
{

1

iωρf

}(
∂Pa

∂r

)∣∣∣∣
r=R

=

(
∂w

∂t

)∣∣∣∣
r=R

(15)

Given the equation (12) for acoustic pressure, Pa will obtain the following
equation [23]:

Pa =

[
ρfω

2
/
krH

′

n

(2)
(Rkr)

]
(16)

where ρf is the density of the contained fluid and the prime on the Jn
denotes differentiation with respect to the argument Rkr.

Equation (16) represents the amplitude of the acoustic pressure on the
shell surface from the fluid outside of the shell, and, in other words, deter-
mines the effect of the shell’s submergence in the fluid.

Using the equation (11) and considering the effects of external fluid, could
be rewritten as the equation of vibration of the shell as follows [21]:L11

L12

L31

L12

L22

L31

L13

L23

L31 + FL

 u
v
w

 =

00
0

 (17)

The FL in the equation above shows the effects of the acoustic pressure
due to the submergence of the shell in the fluid. To calculate FL, can be
written as:

FLo = −ρfω
2

Kr

Hn
(2) (RKr)

H ′
n
(2)

(RKr)
(18)

In other words, if FL is equal to zero, the equations become vibration equa-
tions of a free shell, and in general, the special values of equation (18) repre-
sent the natural frequencies of the system.
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For the out-tube fluid, by applying the wave propagation method, the
equation of wave propagation in the fluid in the tube using the wave propa-
gation equation for the distribution of pressure is obtained as follows:

FLi =
ρf
Kr

Jn (RKr)

J ′
n (RKr)

(
ω2 − U2ks

2
)

(19)

Using Eq. (15), (16) can be written as:

FL = FLo + FLi

=
ρf
kr

(
−Hn

(2) (RKr)

H ′
n
(2)

(RKr)
ω2 +

Jn (RKr)

J ′
n (RKr)

ω2 − UKs
Jn (RKr)

J ′
n (RKr)

)
(20)

Using Eq. (8) we have:T11

T12

T31

T12

T22

T31

T13

T23

T33 + FL

 u
v
w

 =

 oo
o

 (21)

where Tij (i, j = 1, 2, 3) are coefficients of the stiffness matrix and the
3 × 3 matrix on the right hand side of Eq. (16) represents the mass matrix
depending on shell parameters and the type of boundary conditions specified
at the ends of a cylindrical shell and are given as [23]:

T11 =

[(
Ks

2
)
A11 +

n2

R2
A66

]
− ρohω

2

T12 =

[
−nks

(
A11 + A66

R
+

B11 + 2B66

R2

)]
T13 =

[
iks

(
A12

R
+ B11ks

2
+ n

2 B12 + 2B66

R2

)]
T22 =

[
n
2

(
A22

R2
+

2B22

R3
+

C22

R4

)
+ ks

2

(
A66 +

3B66

R
+

4C66

R2

)]
− ρ0hω

2

T23 =

[
−in

(
A22

R2
+

B22

R3
+ n

2

(
B22

R3
+

C22

R4

)
+ ks

2

(
B12 + 2B66

R2
+

C12 + 4C66

R2

))]
T33 =

[
−
(

A22

R2
+

2B12

R
ks

2
+ 2n

2 B22

R3
+ C11ks

4
+ 2n

2
ks

2

(
C12 + 2C22

R2

)
+ n

4 C22

R4

)]
−ρohω

2

By solving the special value problem for equation (19), can be obtain the
natural frequency of vibration of a thin cylindrical shell, by changing n and
s, can be obtain the various vibrational modes of the shell.

4 Result and discussion

In this paper, by using two aluminum and ceramic materials (Al2 O3), the
mechanical properties of each of which are given in Table 1, it is assumed
that aluminum will be as an outer coating and ceramic as inner coating of
the sheet that is involved with the fluid.
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Table 1: Specification of functionally graded material
Type of material Density Elasticity module Poisson coefficient

Al 2702 70 0.3
Al2 O3 3800 393 0.3

To solve using finite element solving method, a cylindrical shell model
was first drawn in the software, and then, the problem of structure and fluid
interaction was used to consider the effects of the fluid outside and inside
the shell. Since in solving a finite element, due to some factors, the response
depends on the size of the mesh, it must be ensured that the mesh size
is sufficiently small and the dimensions of the mesh have no effect on the
solutions; for this purpose, using different mesh sizes, the element solving
has been limited. In Fig. 2, two mesh samples to show for the effect of mesh
size on the finite element solving results for the first frequency is presented.

Figure 2: Mesh of cylindrical shell

Because in solving a finite element, due to some factors, the response
depends on the size of the mesh, it must be ensured that the independence
of the mesh network is not and the dimensions of the mesh do not affect the
frequencies, for this purpose, using different sizes of mesh several times The
finite element solving has been performed and the results are presented in
Fig. 3 for the first frequency.
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Figure 3: Mesh of cylindrical shell

According to Table 2, the optimal value for solving a finite element in a
way that does not depend on the number of meshes, the point of mesh with
average element quality is 0.997.

Table 2: Mesh Quality
Mesh shape Mesh vertexs Number of element Average element quality

a 70372 387950 0.6643

b 558217 3221150 0.997

After finding the optimal mesh size that has no effect on the solution of the
problem, the results for the natural frequency for the form of various modes
are presented in Table 3. In Figures 4 and 5, the shape of the vibrational
modes associated with the first to third vibrational frequencies in contact with
air and in contact with the fluid with a fully bounded boundary conditions
of the FG material (AL/Al2 O3 ) with α= 1 are shown.
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Table 3: The results of the analysis for various figures
Mode shapes (m,n) Natural frequency (Hz)

(1,2) 4.53
(1,3) 8.35
(2,3) 11.31
(2,2) 11.53
(1,3) 15.18
(3,3) 20.39
(2,4) 12.51
(3,4) 22.98

Figure 4: Vibrating base frequency variations of functionally graded material in

contact with air by clamped boundary conditions

Figure 5: Vibrating base frequency variations of functionally graded material in

contact with fluid by clamped boundary conditions
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In order to obtain the results of the analysis, with the problem solving,
the special value of equation (19), considering the geometric values R = 1m
and L/R = 15 and h/R = 0.005, also assuming a speed of 1 m/s for the fluid,
the results will be in Table 4.

Table 4: Natural Frequency in Solving Software and Analytical Solution
Mode Mode shapes Natural Frequency in Natural Frequency in
number (m,n) analytical solution solving software

1 (1,2) 5.001 4.92
2 (1,3) 8.71 8.97
3 (2,3) 10.13 11.26
4 (2,2) 10.89 11.42
5 (3,3) 13.85 15.29
6 (1,4) 18.98 20.48
7 (2,4) 20.08 20.57
8 (3,4) 23.01 23.79

As shown in Table 4, in low-frequencies, the results of the analysis of
finite element and the analytical results extracted from the above-mentioned
method with high accuracy are consistent. In order to better understand the
effect of fluid, which is associated with non-rotating flow at a speed of 1 m/s,
the comparison between the results of this paper and the results of Farahani
and Iqbal research [7, 33] is presented in Table 5.

Table 5: Comparison of the results of the present study with other similar
studies performed in clamped boundary conditions and geometric conditions
L/R = 15, h/R = 0.005, R = 1m

Mode Natural Frequency Natural Frequency Natural Frequency

Mode shapes for fluid contact for fluid flow for fluid flow with
number (m,n) (submerged inside the fluid stationary

cylinder)[33] tube [7] (in this study)
1 (1,2) 5.21 4.93 4.97
2 (1,3) 9.98 8.94 9.31
3 (2,3) 11.36 10.64 10.2
4 (2,2) 11.6 11.48 11.11
5 (3,3) 14.98 14.66 13.64
6 (1,4) 19.01 18.26 17.1
7 (2,4) 19.47 18.73 17.45
8 (3,4) 21.1 19.96 19.1

Given the fact that the fluid velocity can affect the natural vibrational
frequencies of the sheet, in the table 6, considering four different speeds for the
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fluid, the results for the form of various modes for the geometric conditions
L/R = 15 and h/R = 0.005 and R = 1m is shown.

Table 6: Comparison of natural frequencies for different speeds
Mode Mode Natural Natural Natural Natural
number shapes Frequency Frequency Frequency Frequency

(m,n) without speed for speed 2m/s for speed 4m/s for speed 6m/s
1 (1,2) 5.1 5.02 4.58 4.5
2 (1,3) 8.69 9.23 8.61 8.37
3 (2,3) 9.82 9.87 9.77 9.44
4 (2,2) 10.49 10.75 10.23 9.89

In order to better understand the effect of fluid velocity on the natural
frequency of the sheet, according to the results of the above table, for different
velocities of the fluid, the clamped boundary conditions and the geometric
conditions L/R = 20 and h/R = 0.002 and R = 1m for the shape of the
various modes in Figure 6 is plotted.

Figure 6: Comparison of the effect of velocity of fluid inside the cylindrical shell

on the natural frequency of vibration of shell

As shown in Fig. 6, the increase in velocity reduces the natural frequency
of the first modes of the shell. It is necessary to note that the effect of the
velocity of the fluid on reducing the natural frequencies of the first modes
at low velocities is more than high speeds. On the other hand, according to
Fig. 6, reducing natural frequency in different modes has been done with
the change in fluid velocity by approximately one ratio, which can generally

14



be said increase the velocity of the fluid in the cylinder reduces the natural
frequencies. In other words, it can be expected that by increasing fluid veloc-
ity due to increase fluid dynamic pressure, the connection between the fluid
and the structure becomes stronger, which reduces the natural frequencies.
This means that the mechanism of the effect of fluid velocity is similar to the
mechanism of the effect of fluid and structure continuity, and, as the results
of Iqbal et al. [34], shows that, considering the effect of the fluid and struc-
ture continuity, the natural frequencies of each vibrational mode reduces.
Different boundary conditions for free vibration of shell make the numbers of
different longitudinal wave. In other words, due to the fact that free vibration
of shell must satisfy the boundary conditions (geometric conditions such as
displacement, slope, etc.), it is necessary to consider the longitudinal wave
number that according to the longitudinal wave number (m), the geometry
conditions of the beginning and end of the shell are also realized. According
to this issue, it is expected that changing the boundary conditions affect the
free vibration of shell.

As shown in Table 7, change in the boundary conditions makes vibration
of sheet undergoing fundamental changes; for this purpose, in the analytical
model provided with U = 2m/s, the results are as follows:

Table 7: Comparison of the effect of different boundary conditions on natural
sheet frequencies in conditions U = 2m/s , L/R = 15 , h/R = 0.005 , R = 1m

Mode number Mode shapes (m,n) natural frequencies (HZ)
C-C C-SS SS-SS

1 (1,2) 5.02 4.66 3.71
2 (1,3) 9.23 7.93 7.18
3 (2,3) 9.89 8.52 6.79
4 (2,2) 10.75 8.95 7.88

As shown in Table 7, different boundary conditions affect the natural
frequency of the free vibration of submerged sheet containing fluid flow. Ac-
cording to the results of Table 7,(Clamped – Clamped) C-C mode, which
means the clamped boundary conditions for a thin cylindrical shell, the free
vibration frequencies have the highest value. In other words, it can be claimed
that, by limiting the structure, the first natural frequency will be higher and,
consequently, other modes will also have higher frequencies. It is also ob-
served that in (Clamped – Simply Supported) C-SS mode, which means the
beam of one side is clamped and one side is simple supported, the natural
frequency for each mode is greater than the corresponding mode for the (Sim-
ply Supported – Simply Supported) SS-SS mode (simple supported boundary
conditions). It should be noted that the SS-SS mode has the least number
of constraints among the three modes. It is expected that the flowing fluid
shell in this type of boundary condition will require less energy to vibrate,
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which means that the natural frequencies of free vibrations of the sheet in this
case have the least amount than the other boundary conditions. In order to
understand the effect of different boundary conditions on the free vibration
frequency, a comparison has been made between different states in Fig. 7.

Figure 7: different boundary conditions U = 2m/s, L/R = 15, h/R = 0.005,

R = 1m

According to Fig 7. it is concluded that the effect of the SS-SS boundary
conditions on the reduction of the natural frequency of sheet vibrations is
higher in higher modes. Since the reduction of the natural frequencies of the
first vibrational modes has also been observed in other studies due to the
change of the boundary conditions of the system from a completely constrain
to free state (Iqbal 2009) and (Shah 2011) [33, 23]. According to the results
of Fig. 7, it can be claimed that in the shell of fluid carrier and submerged
in water, the boundary conditions with the number of degrees of constrained
release increase the natural frequencies. The main difference observed in this
study is that in higher modes, the effect of reducing constraints in boundary
conditions on reducing the natural frequency of free shell vibrations is greater
than the first and second modes.

Given that the extracted values in the previous sections relate to particu-
lar geometric conditions for the shell, it is necessary to examine the effect of
geometric parameters on this problem. In the previous sections, parameters
L/R = 15, h/R = 0.005, R = 1m were used. In this section, by chang-
ing each of the parameters, the effect of that parameter on the vibrational
behavior of the shell is studied. one of the most important geometric param-
eters is the thickness of the shell, and since in this paper, by assuming the
plate stress, the free vibration problem is solved with the wave propagation
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method, considering the important point that the functionally graded ma-
terial (FGM) is used in the structure of this shell, and changes in material
from the outer surface to the inner surface is using a shell-thickness function,
it can be expected to change the h/R ratio affects the natural frequencies of
the free vibration of the cylindrical shell.

Table 8: Comparison effect of h/R under different velocity conditions of the
fluid on the natural frequencies of the structure under conditions of L/R = 15
and R = 1m

Mode Mode shapes h/R = 0.005 h/R = 0.015 h/R = 0.03
number (m,n) U=0m/s U=6m/s U=0m/s U=6m/s U=0m/s U=6m/s

1 (1,2) 5.1 4.5 9.78 8.23 25.02 19.88
2 (1,3) 8.69 8.37 24.58 23.11 38.98 34.58
3 (2,3) 9.8 9.44 25.01 24.13 40.5 38.8
4 (2,2) 10.49 9.89 35.32 33.58 57.69 47.57

According to Table 8, as expected, the effect of changing the h/R param-
eter on the natural frequencies of the system is very high, so that it can be
said that fluid velocity change has less effect on the natural frequencies of the
cylindrical shell made of functionally graded materials. To understand how
affecting the h/R ratio and examining its simultaneous effect with the fluid
velocity, Figure 8 is plotted.

Figure 8: Comparison of the natural frequency of the first modes of sheet under

different boundary conditions
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Figure 8 shows that by decreasing the h/R ratio, the frequencies also
decrease in such a way that at low ratios h/R, by increasing number of modes
and a small amount is added to frequency, but in larger values of h/R, by
increasing number of mode and increasing the amount, frequency will be
more. In other words, increasing the h/R ratio will increase the distance
between natural frequencies (sequential modes).

In addition, with the increase of h/R ratio, which means increasing the
thickness of shell, the natural frequencies of the shell vibration increase, which
can be said here, although this problem has been solved for a submerged FG
material containing fluid flow, but, as non-emerged isotropic cylinder, the
natural frequencies increase by the shell thickness increase. On the other
hand, it can be found from Fig. 8 that the increase in the velocity of fluid flow
inside the cylindrical shell always has a nearly identical effect on vibrational
behavior and by increasing fluid flow due to the increase interaction of the
structure and fluid, natural frequencies decrease a little. In addition, the
natural frequency variations of the cylinder in contact with the fluid and in
contact with air have been discussed in terms of the volumetric power factor.

Figure 9: Vibrating base frequency variations of functionally graded material in

contact with air in accordance with h/R ratio and four different volumetric ratios

with clamped boundary conditions

In Fig. 9, the graph of the variations of the vibrating base frequency of
sheet from functinally graded material in contact with air with a thickness
ratio of L/R = 15 and clamped boundary conditions for the power factor of
different volume proportions is shown. According to the results presented in
the figure above, the more the amount of thickness in the radius increases,
the vibration frequency of sheet will be low, and it is also observed that the
more the power factor of the volume ratio increases, the frequency of the
system also increases. By increasing the volume ratio, the shell rigidity is
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increased and the ceramic percentage in the sheet increases. The reason is
the direct relationship between the frequency and the volume ratio in the
above figure.

Figure 10: Vibrating base frequency variations of functionally graded material in

contact with fluid in accordance with h/R ratio and four different volumetric ratios

with clamped boundary conditions

Fig. 10 shows the graph of the cylinder base frequency variation from the
functionally graded material in contact with the fluid for the power factor
of the various volumetric ratios with the clamped boundary conditions. A
cylinder with a L/R = 15 ratio is in contact with a fluid with a density of
ρf = 997 kg/m3. First, by comparing the values of the shell frequency in
contact with air and fluid, under the same conditions, the frequency in the
shell contact with the air more than the shell’s contact state with turbulent
fluid. Figure 10 shows that the more the power factor of the volume ratio
increases, the system frequency also increases.

5 Conclusions

This paper investigates the free vibration of the cylindrical shell of function-
ally graded material in contact with turbulent fluid and, used first-order shear
theory to analyze it. Solving equations related to wave propagation is used
to solve the problem of determining free frequencies in a cylindrical shell,
which has a structure–fluid interaction. In the fluid inside the shell, because
the fluid has a velocity along the longitudinal axis, the potential function
is written based on the pressure and velocity of fluid flow. In the case of
fluid outside the shell, since shell is considered submerged and fluid constant,
solving equations is made using hydrostatic pressure. To validate, the ana-
lytical results are compared with the results of the analysis using the Comsol
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software and the results of other studies. In the boundary conditions, use
three movable simple, non-movable simple and completely clamped modes,
which are discussed more because of the importance of a completely clamped
boundary condition.

Using simulation data provided, the effects of different parameters such as
fluid inside and outside the shell, volume fraction exponent, geometrical pa-
rameters and boundary conditions on the natural frequencies were discussed
in detail. the natural frequencies corresponding to the fundamental axial
mode number and the smaller values of circumferential wave numbers are
strongly affected by the fluid.

By examining the results, a summary of the general conclusion is as fol-
lows:

1) Increasing the thickness causes the increase of effect of speed on the
reduction of natural frequencies, especially in higher modes.

2) By examining the motion of the fluid at different velocities, it is possible
to determine the effect of the thickness change, so that the increase in
thickness will increase the effect of speed on the reduction of natural
frequencies, especially in higher modes.

3) By increasing the volumetric power factor due to the increase in rigidity
of the shell, also the natural frequency increases.

4) The effect of boundary conditions on the free natural frequency was
such that, as the constraints increased, the frequency of vibrations also
increased, so that the natural frequency in the clamped mode is more
than the other two.

5) The natural frequency values of the cylindrical shell in contact with the
air are more than contact with the turbulent fluid.

20



6 Nomenclature

c speed of sound(m/s) v modal displacement Direc-
tion θ

H Thickness(m) D
V

Material properties
Volume fraction

E young modulus(GPa) Greek letters

k wave number ρ
′

The mass density of the
shell material

M Moment resltant(N.m) ρ Fluid density(kg/m3)
P pressure(pa) α Poisson ratio
U Velocity fluid (m/s) υ volume ratio
N Force(N) ω natural frequency(Hz)
Q Reduced Stiffness(N/m) Subscripts
L differential operator i, j components
A wave amplitude in the x di-

rection
t time

B wave amplitude in the θ di-
rection

f Contained fluid

C wave amplitude in the z di-
rection

a acoustic

r radius z Direction z
n The number of circomfern-

tial waves
w modal displacement Direc-

tion z
x Direction x

u modal displacement Direc-
tion x

xθ Direction xθ

J Bessel function of first kind θ Direction θ
T Coefficients of the stiffness o mass
FL Effect of acoustic pressure g Power law
L Differential operator s axial
ω Natural frequency of cylin-

dricall shell
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