Alternative neural networks to estimate the scour below spillways
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Abstract

Artificial neural networks (ANN’s) are associated with difficulties like lack of success in a given problem and unpredictable level of
accuracy that could be achieved. In every new application it therefore becomes necessary to check their usefulness vis-a-vis the traditional
methods and also to ascertain their performance by trying out different combinations of network architectures and learning schemes. The
present study was oriented in this direction and it pertained to the problem of scour depth prediction for ski-jump type of spillways. It
evaluates performance of different network configurations and learning mechanisms. The network architectures considered are the usual
feed forward back propagation trained using the standard error back propagation as well as the cascade correlation training schemes,
relatively less used configurations of radial basis function and adaptive neuro-fuzzy inference system. The network inputs were charac-
teristic head and discharge intensity over the spillways while the output was the predicted scour depth at downstream of the bucket. The
performance of different schemes was tested using error criteria of correlation coefficient, average error, average absolute deviation, and
mean square error. It was found that the traditional formulae of Veronese, Wu, Martins and Incyth as well as a new regression formula
derived by authors failed to predict the scour depths satisfactorily and that the neuro-fuzzy scheme emerged as the most satisfactory one
for the problem under consideration. This study showed that the traditional equation-based methods of predicting design scour down-
stream of a ski-jump bucket could better be replaced by one of the soft computing schemes.
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1. Introduction

Applications of neural network (ANN) to solve prob-
lems in water resources have been in vogue since last dec-
ade — although they are mostly confined to hydrology
[1-3]. Employment of the ANN in solving hydraulics-ori-
ented problems is relatively sparse and typically ranges
from the work of Trent et al. [4] dealing with the sediment
transport in open channels, Grubert [5], pertaining to the
flow conditions under interfacial mixing in stratified estuar-
ies to that of Nagy et al. [6], where the sediment discharge
in rivers was predicted. Within the larger field of hydrau-

lics, again a few investigators have addressed the uncertain
issue of scour around structures with the help of the ANN.
Examples of the latter studies include Trent et al. [7], who
evaluated scour at bridge piers, Liriano and Day [8], who
predicted depths of scour at culvert outlets, Kambekar
and Deo [9], who estimated the scour geometry around
groups of piles in the ocean and Azinfar et al. [10], who
applied the ANN to forecast scour depths at the sluice gate.

The use of artificial neural networks as well as that of
hybrid systems like the neuro-fuzzy seems to have been pre-
ferred by different investigators over conventional schemes
likes non-linear regression and numerical methods due to
so many relative advantages. Important ones among them
are that the physics or mechanics of the underlying process
need not be known beforehand, no mathematical model
needs to be assumed a priori, and contrary to conventional
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analytical schemes the ANN is neither required to omit a
large number of input variables nor use them after making
simplification or specifying upper or lower bounds. Further
the ANN’s do not call for any exogenous input other than
the input—output patterns for calibration and unlike many
analytical or numerical models they are less dependent on
the designer’s expertise. It is however noted that the neural
networks may have their own limitations in directly
addressing and understanding physics of the underlying
process and as such they may not completely replace exist-
ing mathematical or physical modeling.

Currently the ANN’s are also associated with difficulties
like lack of success in a given problem and unpredictable
level of accuracy that could be achieved. It therefore
becomes necessary that their usefulness vis-a-vis the tradi-
tional methods are checked for every new application and
their performance is ascertained by trying out different
combinations of network architectures and learning
schemes. The present study is oriented in this direction. It
differs from the previous works on the hydraulic scour
referred to earlier in that it pertains to the scour at the
ski-jump bucket type of spillways and uses field measure-
ments rather than the controlled laboratory ones involved
in most of the earlier studies to train the networks and also
evaluates performance of different network configurations
and learning mechanisms. The network architectures con-
sidered are the regular feed forward (FF) trained using
the standard error back propagation (FFBP) as well as
the cascade correlation (FFCC) training schemes, the rela-
tively less used configurations of radial basis function
(RBF) and adaptive neuro-fuzzy inference system
(ANFIS). This paper is an updated and revised version
of the conference paper [11].

2. The networks

A neural network represents interconnection of neurons,
each of which basically carries out the task of combining
the input, determining its strength by comparing the com-
bination with a bias (or alternatively passing it through a
non-linear transfer function) and firing out the result in
proportion to such a strength as indicated below:

0=1/[1+¢7 (1)
S = (X1W1 + Xowy + x3w3 + - - ) + 0 (2)

where O = output from a neuron; xy, x,, . . . = input values;
Wi, Ws, ... = weights along the linkages connecting any two
neurons and indicating strengths of the connections;
0 = bias value. Eq. (1) indicates a transfer function of Sig-
moid nature, commonly used; although there are other
forms available, like sinusoidal, Gaussian, hyperbolic tan-
gent. Textbooks like Kosko [12] and Wasserman [13] give
theoretical details of the working of an ANN. The known
input—output patterns are first used to train a network
and strengths of interconnections (or weights) and bias val-
ues are accordingly fixed. Thereafter the network becomes

ready for application to any unseen real world example. A
supervised type of training involves feeding input-output
examples till the network develops its generalization capa-
bility while an unsupervised training would involve classifi-
cation of the input into clusters by some rule. In the
supervised training the network output is compared with
the desired or actual one and the error or the difference
so resulted is processed through a mathematical algorithm.
Normally such algorithms involve an iteration process to
continuously change the connection weights and bias
till the desired error tolerance is achieved. The tradi-
tional training method is the standard back-propagation,
although numerous training schemes are available to impart
better training with the same set of data, as indicated by
Londhe and Deo [14] in their harbour tranquility studies.

Most of the previous works on ANN applications to
water resources have included the feed forward type of
the architecture, where there are no backward connections,
(Fig. 1) trained using the error back propagation scheme or
the FFBP configuration. The RBF network (Fig. 2) is also
similar to this in that it has three layers of neurons, namely
input, hidden and output. However it uses only one hidden
layer, each neuron in which operates as per the Gaussian
transfer function, as against the Sigmoid function of the
common FFBP. Further while training of the latter is fully
supervised (where both input-output examples are
required), the same of the former is fragmented, wherein
unsupervised learning of the input information, first classi-
fies it into clusters, which in turn are used to yield the out-
put after a supervised learning. This ‘local tuning’ could
not only be more efficient but also more satisfactory in
modeling data non-linearities than the common FFBP.
Appendix I give mathematical expressions associated with
the use of the RBF architecture.

The ANFIS on the other hand is a hybrid scheme which
uses the learning capability of the ANN to derive the fuzzy
if-then rules with appropriate membership functions
worked out from the training pairs leading finally to the
inference [15,16]. The difference between the common neu-
ral network and the ANFIS is that while the former cap-
tures the underlying dependency in the form of the
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Fig. 1. The FFBP architecture.
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Fig. 3. ANFIS network architecture.

trained connection weights, the latter does so by establish-
ing the fuzzy language rules. The input in ANFIS (Fig. 3) is
first converted into fuzzy membership functions, which are
combined together, and after following an averaging pro-
cess, used to obtain the output membership functions and
finally the desired output. The treatment of data non-lin-
earities in this way has been recently found to be useful
in fields like hydrology [17], traffic engineering [18] and soil
analysis [19]. Mathematical expressions involved in the
working of the ANFIS are given in Appendix I.

As mentioned earlier three different network architec-
tures, namely common feed forward back propagation
(FFBP), radial basis function (RBF) and adaptive neuro-
fuzzy inference system (ANFIS) were considered. In order
to ensure that the training by the back-propagation was
adequate the feed forward network was further trained
using two alternative schemes, namely back-propagation
(BP) and cascade correlation (CC). The corresponding net-
works were termed as FFBP and FFCC. Thirumalaiah and
Deo [20,21] had earlier indicated that efficient learning was
possible when the cascade correlation method was used.
Use of the neural network tool box under the Matlab soft-
ware has been made in the present study. The function:
‘newrb’ involved in it provides an efficient design of the
RBF and hence the same was employed herein. Similarly
the ‘genfis2’ code that generates the first order Sugeno
fuzzy system based on the subtractive clustering of data
sets has been used to develop the ANFIS system.

3. The scour problem

Spillways provide for disposal of flood water in excess of
the reservoir capacity and also lead to the control of water
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flow at the downstream. Out of several types of spillways
the over-fall, ogee and breast wall spillways are more com-
monly used. The energy dissipation in such spillways can
be in the form of ski-jump jet, which throws the water jet
away from the bucket lip into the air, and then in the
plunge pool formed at the point of impact on the tail water
(Fig. 4). The impact of the high velocity jet gives rise to the
scour both upstream and downstream of the point of
impingement. Such impact is transmitted through cracks
and fissures of the rock by way of hydrodynamic pressure
fluctuations causing hydraulic jacking action and also by
the transient pressure fluctuation caused due to air locking.
This causes the rock mass to break into small pieces and to
consequently get swept away in the downstream of the
river. The erosion continues up to the point where the
impinging jet energy is insufficient to exert breaking pres-
sure on the rock or where the secondary current produced
are less strong to remove the rock blocks [22].

The process of scouring continues till an equilibrium
scour depth is reached, which corresponds to a situation
where increased water depth in the scour hole precludes
exertion of bed shear stress that is sufficient to cause further
bed erosion or to a condition where rate of bed erosion is
balanced by the rate of deposition of material brought back
into the scour hole by the return flow. There are various
hydraulic, morphologic and geotechnical factors governing
the depth of scour, ¢, namely, (referring to Fig. 4) discharge
intensity ¢, height of fall H;, bucket radius R, bucket lip
angle, ¢, type of rock, degree of rock homogeneity, time
and mode of operation of spillway. Various investigators
over a period of several decades in the past have given
empirical formulae based on laboratory as well as proto-
type observations in order to predict the scour depth down-
stream of the ski-jump bucket spillway. For Indian
applications the formulae proposed by Veronese [23], Wu
[24], Martins [25] and Incyth [26] are popular. The use of
the Veronese formula has also been recommended in The
Bureau of Indian standards [27] and is still followed
in India. The expressions of these four formulae are
respectively:

= 1 '9Oq0.54H(1).225 (3)
0.51
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(= 154" (5)
t = 1424”00 (6)
RESERVOIR LEVEL

Fig. 4. Spillway and scour hole notations.
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Since recent past the prediction of scour holes using
numerical models has been attempted by some investiga-
tors. In such schemes the governing differential equations
representing continuity of mass, momentum or energy
and modeling turbulent flows or transport phenomenon
through Navier-Stokes or Reynolds convection—diffusion
equations are solved using a suitable numerical scheme.
The corresponding studies are due to Hoffmans and Booij
[28], who simulated development of the local scour, Olsen
and Melaaen [29] and Olsen and Kjellesvig [30] who mod-
eled the scour process around cylinders, Karim and Ali [31]
and Ali et al. [32], who predicted scour below free fall jets,
Link and Zanke [33], who studied scour around bridge
piers. Numerical studies involving scour around ski-jump
bucket explicitly are however lacking and use of the empir-
ical Egs. (3)—(6) as above is till traditionally followed, espe-
cially in countries like India (as dictated by the design
code), where a very large number of such spillways exist.

Use of the above equations is very convenient, however
their major drawback is that they involve idealization,
approximation and averaging of widely varying prototype
conditions and could predict scour depths which may be
considerably different than their actual values. e.g. the
Rana Pratap sagar dam built across the River Chambal
in India had design discharge intensity of 47.6 m*/s/m
and corresponding head H; of 26.6 m. With these causative
factors one would expect scour depths ‘© of 32.01 m,
12.21 m, 21.1 m and 19.51 as per Eqgs. (3)—(6) respectively.
As against this the actual deepest scour observed was only
24.7 m. (incidentally the authors-derived Eq. (7) mentioned
later also predicts ¢ =20.67 m, further indicating inade-
quacy of the regression approach). Egs. (5) and (6) were
presented later than Egs. (3) and (4) by probably consider-
ing additional information available at that time and hence
seem to yield estimates more close to the actual measure-
ment. It is felt that such vast differences are partly due to
the complexity of the phenomenon involved and partly
because of the limitation of the analytical tool commonly
used by most of the earlier investigators namely, non-linear
statistical regression. The present study therefore reana-
lyzes the past data using the ANN’s.

4. The database used

A majority of past works on scour predictions utilized
the hydraulic model studies, which were more helpful in
exploring the scour mechanism than in obtaining more
accuracy in the depth estimation. They suffer from the
problems arising out of the scale effects, inability to cor-
rectly model certain field conditions like bed morphology
and loss of flow energy in aeration as well as failure to con-
sider a variety of causative factors simultaneously. In this
study therefore neural networks were calibrated with the
help of realistic field conditions only, although it is recog-
nized that prototype measurements may also suffer from
instrumental uncertainties and inaccuracies and lack of
availability of data on all causative parameters. The publi-

Fig. 5. Observed scour depths against varying values of ¢ and H;.

cations reporting such observations indicated that only
three types of information, namely, scour depth below tail
water level ¢, discharge intensity ¢, and head drop H, are
uniformly reported in all references and that the informa-
tion on other factors affecting the scour was not commonly
available across them. Although there are many factors
that affect the scour depth some of them only are of pri-
mary importance [34]. In addition considering that many
traditional prediction formulae, including those due to
Veronese [23], Wu [24], and Martins [25] are based only
on ¢ and H; a neural network with 2 input nodes and
one output node only was developed (Fig. 1). In total there
were 91 input—output pairs formed from the published data
reported in Wu [24], Martins [25], Sen [35], Spurr [36],
Wang [37], Akhmedov [38], Khatsuria [39], Yildiz and
Uziicek [40] and Yildiz and Uziicek [41]. They are graphi-
cally shown in Fig. 5 which shows the ordinates of the
observed scour depths against the varying values of ¢ and
H,. Presence of a wide scatter and absence of fixed or reg-
ular and simple relationships between these input—output
variables can be noted, which justifies application of the
ANN’s for the prediction problem under consideration.

5. Network testing

Eighty percent input-output patterns, chosen randomly
till the best training performance was seen, were used for
network training while remaining ones were used for test-
ing or validating the trained network. The number of input
and output nodes for all the networks considered in this
work was 2 and 1 respectively. The number of hidden
nodes in FFBP was decided by trials. The network was
trained by increasing the number of hidden nodes, starting
from 1 and every time it’s testing performance was noted
on the testing set of data in terms of the error measures.
The most acceptable testing performance was reached
when the number of hidden nodes was only 2 in the present



case (see Fig. 1). The number of hidden nodes for the RBF
gets determined in the mathematical training process and
this was also 2 in the present problem.

Figs. 6-9 show the testing results of the two FFBP and
FFCC networks as well as those of the RBF and ANFIS
networks respectively in terms of scatter plots of predicted
versus observed scour. Such testing was also performed in
respect of the traditional formulae proposed in the past by
Veronese [23], Wu [24], Martins [25], Incyth [26] as well as
in respect of a new regression equation derived by the
authors on the basis of the compiled data set. The fit of
the non-linear regression equation by authors to the train-
ing data set yielded following equation:

t = 1.42¢"%H93 (7)

Figs. 10-14 indicate respectively the corresponding for-
mulae-based testing plots.

A quantitative comparison is shown in Table 1 in terms
of the four error measures namely, (i) the correlation coef-
ficient, r, which presents the degree of linear association
between predicted and true values, (ii) the average error
(+ or —), AE, which is a parameter commonly understood
in engineering applications, and which considers algebraic
difference between predicted and true values, (iii) the aver-
age absolute deviation, §, which does not even out positive
or negative errors as in AE, and (iv) the mean square error,
MSE, which is preferred to in many iterative prediction
and optimization schemes. Expressions for these measures
are given in Appendix II.

The above exercise indicated that the values of r across
different neural networks varied from 0.90 to 0.95; those of
AE changed from —8.90% to —33.56% while the 6 values
ranged from 12.09% to 24.12%. In contrast to these net-
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Fig. 6. Observed versus predicted scour depths by FFBP.
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Fig. 8. Scatter plot of observed versus predicted scour depths by RBF.

work-based error measures, the values of r were much
lower and those of AE and ¢ were much higher in the case
of all regression-based formulae including the new non-lin-
ear regression formula. The FFBP and FFCC (Figs. 6 and
7) showed a tendency to overestimate, indicating that the-
ses schemes were unable to model the data non-linearity
adequately, unlike the RBF and the ANFIS schemes (Figs.
8 and 9). Table 1 suggests that the RBF and the ANFIS
yielded more or less similar predictions (although RBF
(Fig. 8) produced larger estimates in a better way than
ANFIS (Fig. 9)), which is understandable considering sim-
ilarities in the data processing with these methods. Fig. 7
indicates that the cascade correlation is only an efficient
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Fig. 11. Observed versus predicted scour depths by Wu.
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Table 1

Comparison of network — yielded and true scour depths
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Figure no. Method Correlation Average error, Average absolute Mean square error,
coefficient, r AE deviation, o MSE
6 Neural network (FFBP 0.92 —8.89 13.27 115.64
based)
7 Neural network (FFCC 0.90 —33.56 24.12 154.79
based)
8 RBF 0.91 10.02 19.93 64.68
9 ANFIS 0.95 13.64 12.09 55.43
10 Veronese 0.73 —18.50 22.57 130.02
11 Wu 0.73 16.94 27.60 128.92
12 Martins 0.69 21.15 28.52 193.85
13 Incyth 0.73 21.90 26.76 149.85
14 Regression (authors) 0.78 —-24.90 26.89 136.78

method of training but it need not result in better accuracy
compared with the ordinary back-propagation. Compari-
son of Fig. 7 with other similar figures shows that adequate
training is really necessary while applying the neural net-
work; otherwise one may not get results better than the tra-
ditional regression.

Among the five formulae listed earlier in Egs. (3)—(7) the
author-derived formula goes very close to that of the Inc-
yth equation. A small change in the exponent of ¢ and
H, (in the Incyth formula) seems to result in improved pre-
dictions as reflected in higher ‘r’ and generally lower mean
square error in the author-derived formula (see Figs. 13
and 14 and Table 1). The Veronese formula, suggested by
the Indian design codes [27] showed a large error margin
with respect to the neural networks. Among the prevailing
regression formulae the Veronese’ (Fig. 10) predictions are
mostly higher, especially in the middle range, while Mar-
tins’s (Fig. 12) are lower and so also of Wu’s (Fig. 11),
especially at higher scour levels. The Incyth, formula
(Fig. 13) over-predicts at lower values and under-predicts
at higher values. The author-derived Eq. (7) (Fig. 14) also
suffers from the same problem but it produced the highest
correlation coefficient among the regression equations. The
databases used by the earlier investigators were different
than the present one, which could be a major reason for
such a discrepancy.

Table 1 clearly indicates overall best performance of the
ANFIS in that it has the lowest values of all other error
measures, except that of ‘¥ which only indicated relatively
weak tendency of predictions to linearly co-vary with the
actual values. The hybrid technique of ANFIS is the latest
addition to the soft tools made available to civil engineers
for soft computations and is believed to combine advanta-
ges of both ANN and fuzzy logic. While predicting certain
sand mixture properties, Akbulbut et al. [19] had earlier
also observed that the ANFIS-based predictions were bet-
ter than the FFBP, although Nayak et al. [17] had noted to
the contrary that when overall error criteria were applied
ANFIS performed similar to the ANN in their riverflow
prediction problem. It appears that the treatment to non-
linearities in the scour data meted out in the present prob-
lem by the ANFIS approach worked better than the other

schemes. In other words the scour data seem to be more
amenable to fuzzy if-then rules rather than crisp-value pro-
cessing in the other networks. The ANFIS ensures localized
functioning of the transfer function as against the global-
ized one of a general FFBP. This results in smaller number
of values participating in the mapping process, which in
turn requires limited data for training (as against the
FFBP).

This study thus showed that traditional equation-based
methods of predicting the design scour downstream of a
ski-jump bucket could better be replaced by the neural net-
work and similar soft computing schemes. Within the dif-
ferent networks employed the relatively advanced ANFIS
could produce more satisfactory results.

The developed networks need not be always viewed as
only ‘black-boxes’ or ‘transfer functions’. Like regression
based equations they can also be used to understand the
underlying physical process to some extent. e.g. Azamat-
hulla et al. [42] have shown how in case of data retrieved
from the hydraulic model experiments the network can
draw parametric variations of the scour depth with unit
discharge, head and other causative variables for ski-jump
spillways. Similarly Azamathulla [43] further made
attempts to decipher the internal functioning of such net-
works. By studying the output fired by the hidden and
the output neuron in a relative manner for varying scour
depths it was concluded that the hidden neurons may indi-
vidually model effects of a particular causative variable,
may carry out a piece wise regression or may do some kind
of partitioning of the input domain into sub-domain as a
part of their modeling process. Wilby et al. [44] and Jain
et al. [45] had earlier noticed similar facts while working
on time series modeling in rainfall-runoff processes. Such
an analysis in case of the present network showed that both
the hidden neurons model the input-output process
equally, which is understandable due to very small number
of input and hidden neurons.

It is recognized that the above analysis is based on a lim-
ited amount of available records of scour depths (although
all the networks involved were parsimonious). It would be
interesting to know if the same level of accuracy can be
achieved when the sample size increases indefinitely.
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The present studies were based only on the field mea-
surements for which knowledge of limited causal variables
was available. A more general network however would
involve consideration of additional input like hydraulic
parameters (R and @) and geotechnical factors (rock size,
rock mass rating, rock quality designation). This is dis-
cussed separately in Azamathulla et al. [42]. However it
may be noted that the current studies presented networks
based on actual field situations rather than on controlled
laboratory conditions and hence might reflect reality in a
better way. The work reported in this paper goes beyond
that in Azamathullah et al. [46] that dealt with only the
usual feed forward back propagation type of the network.

6. Conclusions

If the prediction of scour downstream of a ski-jump
bucket is desired to be made with the help of the regression
formulae alone then the new Eq. (7) derived by the authors
based on compilation of past field data can be recom-
mended in preference to the traditional equations by Vero-
nese, Wu, Martins and Incyth. Among these prevailing
formulae the Veronese equation over-predicts the actual
scour while the Wu and Martins formulae under predict
the same.

The usual feed forward networks of FFBP and FFCC
showed a tendency to overestimate at lower values, unlike
the RBF and the ANFIS. The RBF and the ANFIS yielded
more or less similar predictions. A common application of
the four different error criteria indicated an overall best
performance of the ANFIS in this particular mapping
problem. The treatment to non-linearities in the scour data
meted out by the ANFIS approach worked much better
than the other schemes. The scour data thus seem to be
more amenable to fuzzy if-then rules rather than crisp-
value processing. The ANFIS ensures localized functioning
of the transfer function as against the globalized one of a
general FFBP resulting in smaller number of values partic-
ipating in the mapping process, and hence may work well,
as in the present case, with limited data for training.

This study thus showed that the traditional equation-
based methods of predicting design scour downstream of
a ski-jump bucket could better be replaced by the neural
network and similar soft computing schemes.

Appendix I. The RBF and ANFIS networks
The RBF network

The output y of a RBF network corresponding to input
x is computed by the equation:

y=10) = Y wR() +0 ®)

where w; = connection weight between the hidden neuron
and output neuron; 0 = bias, Ry(x) are radial basis func-
tions given by (Fig. 2):

Ri(x) = ¢llx — cil ®)

having a maximum value at the origin that decays rapidly
as its argument tends to infinity. It approaches zero as the
Euclidean distance increases between an input vector and
the center increases. The general class of radial basis func-
tions is Gaussian:

" ||>
Ri=—exp|-Y 122 (10)
( ; 207,

where ¢ = [ci1, ¢, ¢, ¢y 18 the center of the receptive
field; and ¢; = width of the Gaussian function which indi-
cates the selectivity of the neuron. The major task of RBF
network design is to determine center ¢. The simplest and
easiest way may be to choose the centers randomly from
the training set. The second approach is to use the k-means
technique of clustering input training set into groups and
choose the center of each group as the center. Also, ¢ can
be treated as a network parameter along with w; and ad-
justed through error-correction training. After the center
is determined, the connection weights w; between the hid-
den layer and output layer can be determined simply
through ordinary back-propagation training.

The ANFIS network

This network (Fig. 3) works as follows: Let x and y be
the three typical input values fed at the two input nodes,
which will then transform those values to the membership
functions (say bell-shaped) and give the output as follows:
Note in general, w = output from a node; u = membership
function, 4; , B; = fuzzy sets associated with nodes x, y.

1
= (11)
L+ |(x = er)/an[™
where a;, by, and ¢; =changeable premise parameters.
Similar computations are carried out for the input of y to
obtain u, (v). The membership functions are thereafter
multiplied in the second layer e.g.:

(i=1,2) (12)

i (%)

Wi = (%), (¥)
Such products or firing strengths are then averaged, i.e.,
wi=wi/ > w (i=1,2) (13)

Nodes of the fourth layer use the above ratio as a
weighting factor and using fuzzy if-then rules produce the
output as below: (An example of the if-then rule is: If x
is Ay and y is By then fi =p\x + qy +11)

wifi = wi(px + qy + 1) (14)

where p, ¢, r = changeable consequent parameters. The fi-
nal network output fis produced by the node of the fifth
layer as summation of all incoming signals, exemplified in
the previous Eq. (14).



For imparting faster training and adjusting the network
parameters to the above network a two-step process is
used. In the first step the premise parameters are kept fixed
and the information is propagated forward in the network
to layer 4, where a least-squares estimator identifies the
consequent parameters. In the second step, the backward
pass, the consequent parameters are held fixed while the
error is propagated, and the premise parameters are mod-
ified using the gradient descent. Apart from the training
patterns the only user-specified information required is
the number of membership functions for each input. The
description of the learning algorithm is given in Jang and
Sun [15].

Appendix II. The error measures

Correlation coefficient (r),

SOt 2 (15)
V22X

where

x=(X-X), y=(Y —7Y), X = observed values, X =
mean of X, Y =predicted value, Y = mean of Y. The
summation in the above equation as well as in the follow-
ing two equations is carried out over all ‘#’ number of test-
ing patterns.

Average error (AE),

2T %100
AE = 2= x 10 (16)
n
Mean square error (MSE),
2
MSE = M (17)

n

Average absolute deviation, J:

_ 2y =X)
5*_§j7_“m (18)
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