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a b s t r a c t

This study presents new application of group method of data handling (GMDH) to predict scour depth around

a vertical pier in cohesive soils. Quadratic polynomial was used to develop GMDH network. Back propagation

algorithm has been utilized to adjust weighting coefficients of GMDH polynomial thorough trial and error

method. Parameters such as initial water content, shear strength, compaction of cohesive bed materials, clay

content of cohesive soils, and flow conditions are main factors affecting cohesive scour. Performances of the

GMDH network were compared with those obtained using several traditional equations. The results indicated

that the proposed GMDH-BP has produced quite better scour depth prediction than those obtained using

traditional equations. To assign the most significant parameter on scour process in cohesive soils, sensitivity

analysis was performed for the GMDH-BP network and the results showed that clay percentage was the

most effective parameter on scour depth. The error parameter for three classes of IWC and Cp showed that

the GMDH-BP model yielded better scour prediction in ranges of IWC = 36.3–42.28% and Cp = 35–100%. In

particular application, the GMDH network was proved very successful compared to traditional equations.

The GMDH network was presented as a new soft computing technique for the scour depth prediction around

bridge pier in cohesive bed materials.
c© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Scouring phenomena is a significant problem for bridge engineer-

ing. There are several ocean and coastal structures located in rivers,

sea and streams that may be prone to erosion due to combinations of

scouring factors. It is believed that erosion in cohesive bed materials

occurs when the fluid shear stress is sufficient to overcome the tensile

strength of the bed material and submerged unit weight of the soil.

Investigations on scour depth in non-cohesive materials have been

extensively carried out in the last few decades [1–5]. In contrast, few

researchers have studied scouring in cohesive soils [6–15]. Most of

the investigations resulted traditional equations based on regression

models in limited experimental conditions [11,12,14,15]. Each of the

traditional equations has focused on special parameters. Conditions of

laboratory and field are limiting factors that can be caused to provide

the prediction of scour depth with low accuracy.

Recently, various artificial intelligence approaches such as ar-

tificial neural network (ANN), adaptive neuro-fuzzy inference sys-

tem (ANFIS), genetic programming (GP), linear genetic programming

(LGP), data mining, and machine learning method were applied to de-

velop the modeling of problems in scour prediction [16–23]. Among
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these methods, the GMDH network is known as a system identifica-

tion method which is employed in various fields in order to model

and forecast the behaviors of unknown or complex systems based on

given input–output data pairs [24]. Recently, GMDH network has been

utilized to predict scour depth around bridge piers, abutments, and

pipelines in coarse bed sediment [25–28,29]. Results of performances

indicated that combinations of iterative and evolutionary algorithms

with GMDH network provided quite better prediction than those ob-

tained using traditional equations and soft computing tools.

In addition, the GMDH approach has been used in different re-

searches such as energy conservation, control engineering, system

identification, marketing, economics and engineering geology [24,30–

33].

The main objective of this study is to investigate the efficiency

of the GMDH network and traditional equations in the prediction

of scour depth in cohesive soils. Furthermore, influence of the ef-

fective parameters on the scour depth would be considered. In this

way, GMDH network has been improved using back propagation (BP)

technique, and a programming code was introduced.

2. Review on pier scour in cohesive soils

The scour of cohesive materials is fundamentally different from

that of non-cohesive materials. It involves not only complex mechan-

ical phenomena, including shear stress and shear strength of soils,

but also the chemical and physical bonding of individual particles

0141-1187/$ - see front matter c© 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.apor.2012.12.004

http://dx.doi.org/10.1016/j.apor.2012.12.004
http://www.sciencedirect.com/science/journal/01411187
http://www.elsevier.com/locate/apor
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.apor.2012.12.004&domain=pdf
mailto:Moha$_$Najafzadeh@yahoo.com
http://dx.doi.org/10.1016/j.apor.2012.12.004


36 M. Najafzadeh et al. / Applied Ocean Research 40 (2013) 35–41

and properties of the eroding fluid [34]. Also, scouring process in co-

hesive soils is more complicated than that of non-cohesive soils. A

few investigators have studied scour in cohesive soils. Molinas and

Honsy [35] carried out experiments to study the effects of compaction,

soil shear strength, initial water content, and the approaching flow

conditions on pier scour in unsaturated and saturated cohesive soils.

They presented two empirical equations for unsaturated and satu-

rated cohesive soils. Briaud et al. [6,7] presented SRICOS–EFA (scour

rate in cohesive soils–erosion function apparatus) method for the

prediction of scour depth around a vertical pier in cohesive soils. Sub-

sequently, Briaud et al. [8] developed SRICOS–EFA method for scour

depth around cylindrical complex piers in fine-grained soils. Ting et

al. [10] concluded that predicted equilibrium scour in tree type of

clay soils correlated well with the pier Reynolds number. Also, the

shape of scour hole depended directly on Reynolds number and an

equation was derived based on function of the pier Reynolds number.

Rambabu et al. [11] investigated current-induced scour around a ver-

tical pile in cohesive soil. They presented an empirical equation based

on Reynolds number, Froude number, and saturated shear strength of

soil. Also, Ansari et al. [12] investigated influence of cohesion on scour

around bridge pier. They presented a mathematical algorithm based

on cohesive soils properties for scour depth prediction. Najafzadeh

[14] has carried experiments, and developed a relationship between

the ultimate scour depth and effective parameters, by using dimen-

sional analysis. Finally, the experimental ultimate scour depths were

compared with those calculated by traditional equations.

Recently, Debnath and Chaudhuri [15] reported experimental re-

sults of scour depth in cohesive soils. They also investigated the effect

of clay-content and initial water content on maximum equilibrium

scour depth, equilibrium scour hole geometry, scouring process, and

time variation of scour.

3. Data collection

Based on the previous studies, the scour depth around a vertical
pier in cohesive soils depends on initial water content of soil, com-
paction of cohesive soils, clay percentage, shear strength of bed soil
[6–8,10–12,14,15]. Therefore, the following equation can be used for
cohesive soils:

ds = f (ρ,μ, U, d50, y, g, D, IWC, C p, S) (1)

where ds, ρ , μ, U, d50, y, g, D, IWC, Cp, and S are scour depth, mass

density of water, fluid dynamic viscosity, flow velocity, medium di-

ameter of bed material, flow depth, acceleration due to gravity, pier

diameter, initial water content, clay percentage, and shear strength

of cohesive soils, respectively.

The following equation was resulted using dimensional analysis:

ds

D
= f

(
Rep,

d50

D
, F rp,

y

D
, IWC, C p,

S

ρU 2

)
(2)

where ds/D, Rep, d50/D, Frp, IWC, Cp, and S/ρU2 are non-dimensional

scour depth, pier Reynolds number, non-dimensional particle size,

pier Froude number, initial water content, clay fraction, and non-

dimensional bed shear strength.

In this study, to reduce number of non-dimensional parameters

and prevent the complexity of the GMDH networks, Frp and y/D have

been combined with each other. This combination results in the flow

Froude number:

Fr = U√
g.y

(3)

Also, pier Reynolds number is not an important parameter if the

viscous effects are concerned but pier Reynolds number influences

the frequency of vortex shedding. Pier Reynolds number is not a sig-

nificant parameter if the flow around the pier is fully turbulent and is

generally neglected in pier scour study [14,15,36,37]. Also, the present

Table 1.

Ranges of used data for development of the GMDH-BP network.

Parameters Ranges

y 0.3–0.6 (m)

D 50–120 (mm)

d50 0.00808–0.037 (mm)

S 1.88–35.6 (kPa)

IWC 10.7–45.92%

Cp 20–100%

ρ 1000 (kg/m3)

ds 7.3–224 (mm)

U 0.141–0.8187 (m/s)

g 10 (m2/s)

μ 0.001 (Pa S)

data sets were performed at d50/D < 50 and based on the investiga-

tions of Ettema [3] and Chiew [38] the scour depth was independent

of the sediment size:

ds

D
= f

(
Fr, IWC, C p,

S

ρU 2

)
(4)

The data sets used were collected from Najafzadeh [14] (12 data

sets), Debnath and Chaudhuri [15] (71 data sets), and Rambabu et al.

[11] (12 data sets). Table 1 presents the ranges of data sets parameters.

Out of the total 95 data sets, about 75% (71 data sets) were selected

randomly for training whereas the remaining 25% (24 data sets) were

used for testing stage.

It was established that, use of grouped non-dimensional parame-

ters produced better predictions of scour depth than that of dimen-

sional parameters [16,18,21–23,25]. In this way, Eq. (4) was used to

develop the GMDH network for the prediction of scour depth in cohe-

sive soils. Furthermore, several traditional equations were presented

in Table 2 for the evaluation of the scour depth in cohesive soils.

4. Principle of the GMDH network

GMDH is a learning machine based on the principle of heuristic

self-organizing, proposed by Ivakhnenko in the 1960s. It is an evo-

lutionary computation technique, which has a series of operations

such as seeding, rearing, crossbreeding, and selection and rejection

of seeds corresponding to the determination of the input variables,

structure and parameters of model, and selection of model by prin-

ciple of termination [24,39,40]. In fact, the GMDH network is a very

flexible algorithm and it can be hybridized by using evolutionary

and iterative algorithms such as genetic algorithm (GA) [24,32], ge-

netic programming (GP) [25,41], particle swarm optimization (PSO)

[42], and back propagations [25,30,43]. The previous researches es-

tablished that hybridizations were successful in finding solutions of

problems in different fields of engineering. By means of GMDH al-

gorithm a model can be represented as set of neurons in which dif-

ferent pairs of them in each layer are connected through quadratic

polynomial and thus produce new neurons in the next layer. Such

representation can be used in modeling to map inputs to outputs. The

formal definition of system identification problem is to find a func-

tion f̂ that can be approximately used instead of actual function f, in

order to predict the output ŷ for a given input vector X = (x1, x2, x3,

. . ., xn) as close as possible to its actual output y. Therefore, for a given

n observation of multi-input–single-output data pairs:

yi = f (xi1, xi2, xi3, . . . , xin) (i = 1, 2, . . . , M) (13)

It is now possible to train a GMDH network to predict the output

values ŷi for any given input vector X = (xi1, xi2, xi3, . . ., xin), that is

ŷi = f̂ (xi1, xi2, xi3, . . . , xin) (i = 1, 2, . . . , M) (14)
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Table 2.

Traditional equations for prediction of pier scour depth in cohesive soils.

Equations Authors Eq. no.

ds/D = F r0.641 R0.64
ep (S/ρs gy)

−0.976
Rambabu et al. [11] (5)

ds/D = 0.0288I WC1.14(350/IWC2 − Fr)
0.6

Molinas and Honsy [35] (6)

ds/y = 5565.05(S/ρs gy)
0.83

C p F r2.306 Najafzadeh [14] (7)

ds/D = 2.05(U/
√

g.D)
1.72

C −1.29
p (S/ρU 2)

−0.37
,

C p = 20 − 85% and IWC = 20 − 23.22%

Debnath and Chaudhuri [15] (8)

ds/D = 3.64(U/
√

g.D)
0.22

C −1.01
p (S/ρU 2)

−0.69

C p = 20 − 50% and IWC = 27.95 − 33.55%

Debnath and Chaudhuri [15] (9)

ds/D = 20.52(U/
√

g.D)
1.28

C 0.19
p (S/ρU 2)

−0.89

C p = 50 − 100% and IWC = 27.95 − 33.55%

Debnath and Chaudhuri [15] (10)

ds/D = 3.32(U/
√

g.D)
0.72

C −0.62
p IWC 0.36(S/ρU 2)

−0.29
,

C p = 20 − 70% and IWC = 33.60 − 45.92%

Debnath and Chaudhuri [15] (11)

ds/D = 8(U/
√

g.D)
0.61

C 0.58
p IWC 1.24(S/ρU 2)

−0.19
,

C p = 70 − 100% and IWC = 33.60 − 45.92%

Debnath and Chaudhuri [15] (12)

In order to solve this problem, GMDH builds the general relation-

ship between output and input variables in the form of mathematical

description, which is also called reference. The problem is now to de-

termine a GMDH network so that the square of difference between

the actual output and the predicted one is minimized, that is:

M∑
i=1

[
f̂ (xi1, xi2, xi3, . . . , xin) − yi

]2

→ min . (15)

General connection between inputs and output variables can be

expressed by a complicated discrete form of the Volterra function a

series in the form of:

y = a0 +
n∑

i=1

ai xi +
n∑

i=1

n∑
j=1

aijxi x j +
n∑

i=1

n∑
j=1

n∑
k=1

aijkxi x j xk + . . . , (16)

which is known as the Kolmogorov–Gabor polynomial [24,39,44,45].

The polynomial order of PDs is the same in each layer of the net-

work. In this scenario the order of the polynomial of each neuron

(PN) is maintained the same across the entire network. For example,

assume that the polynomials of the PNs located at the first layer are

those of the 2nd order (quadratic):

ŷ= G (xi , xj ) = a0 + a1xi + a2xj + a3xi x j + a4x2
i + a5x2

j (17)

Here, all polynomials of the neurons of each layer of the network

are the same and the design of the network is based on the same

procedure. The second order polynomial is fundamental structure

of the GMDH network that has been proposed by Ivakhnenko [39].

Generally, different types of polynomial such as bilinear, quadratic,

tri-quadratic, and 3rd order were used to design self-organized sys-

tems [42,46,47]. Use of tri-quadratic and 3rd order polynomial gener-

ated more complicated network in comparison with quadratic poly-

nomial. Bilinear polynomial produced lower complicated structure

in comparison with quadratic polynomial. Quadratic polynomial has

six weighting coefficients that generated good results in engineering

problems [24,25,30–33]. Based on previous investigations, selection

of polynomials could depend on minimum error of objective function

and complexity of polynomial type. In this study, quadratic polyno-

mial was utilized for modeling of scour depth around bridge pier. The

weighting coefficients in Eq. (17) were calculated using regression

techniques [24,44] so that the difference between actual output, y,

and the calculated one, ŷ, for each pair of xi, xj as input variables was

minimized. In this way, the weighting coefficients of quadratic func-

tion Gi were obtained to optimally fit the output in the whole set of

input–output data pair, that is:

E =
∑M

i=1 (yi − G i ())
2

M
→ min . (18)

4.1. Application of BP Algorithm in the topology design of GMDH

network

In this section, the GMDH network was improved using back prop-

agation algorithm. This method included two main steps. The first, the

weighting coefficients of quadratic polynomial were determined us-

ing least square method from input layer to output layer in form of

forward path. The second, weighting coefficients were updated using

back propagation algorithm in a backward path. Again, this mecha-

nism could be continued until the error of training network (E) was

minimized. The other details of training stages were presented in lit-

eratures [25,43]. In present study, number of neurons used in GMDH

structure is 10 and 6 of them are the selective neurons that have been

selected based on trial and error process. The structure of GMDH net-

work has been adjusted by training error and learning rate values of

0.034 and 0.01, respectively. Also, Fig. 1 indicates training error values

of each neuron thorough three layers. From the GMDH performances,

the corresponding selective polynomials are presented as follows:

(
ds

D

)1

3

= 0.3278 + 0.0022IWC

−0.585Fr + 0.1309IWC.Fr

−0.00048IWC 2 − 1.35F r2

(19)

(
ds

D

)1

5

= −0.2806 + 0.00288
S

ρU 2

+5.347Fr − 0.0232
S

ρU 2.Fr
−

−7.62 × 10−7

(
S

ρU 2

)2

− 2.42133F r2

(20)

(
ds

D

)1

6

= 1.657 − 0.0573C p + 2.304Fr − 0.0675C p.Fr+
0.000586C 2

p + 7.834F r2

(21)

(
ds

D

)2

2

= 0.1303 − 0.128

(
ds

D

)1

3

+0.507

(
ds

D

)1

6

− 0.5687

(
ds

D

)1

3

(
ds

D

)1

6

+0.5865

((
ds

D

)1

3

)2

+ 0.4168

((
ds

D

)1

6

)2

(22)
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Fig. 1. Training error and number of neurons in the structure of GMDH network.

Table 3.

Performances of the proposed GMDH-BP in training and testing stages.

Method R RMSE MAPE BIAS SI

Training 0.92 0.183 0.26 0.00 0.218

Testing 0.91 0.184 0.74 −0.045 0.22

(
ds

D

)2

3

= 0.0489 − 0.369

(
ds

D

)1

5

+

1.138

(
ds

D

)1

6

− 0.6505

(
ds

D

)1

5

(
ds

D

)1

6

+

0.5937

((
ds

D

)1

5

)2

+ 0.2156

((
ds

D

)1

6

)2

(23)

(
ds

D

)3

1

= 0.0208 + 2.9068

(
ds

D

)2

2

− 1.957

(
ds

D

)2

3

−

0.9366

(
ds

D

)2

2

(
ds

D

)2

3

− 0.445

((
ds

D

)2

2

)2

+ 1.4092

((
ds

D

)2

3

)2 (24)

in which superscript and subscript of each parameter present the

number of pertaining layer and neuron, respectively.

5. Results and discussion

The results of GMDH network and traditional equations are pre-

sented in this section. In addition, influences of the non-dimensional

parameters on the scour depth have been considered. In this way,

correlation coefficient (R), root mean square error (RMSE), scatter in-

dex (SI), BIAS, and mean absolute percentage of error (MAPE) are the

commonly used prediction error indicators in the training and testing

stage [16,22,25].

5.1. Performances of the GMDH network and traditional equations

Validation of the GMDH network for the training and testing stages

provided relatively low error in the prediction of scour depth. The

main advantage of proposed GMDH is that only six weighting coef-

ficients are available in each neuron. In this way, structure of GMDH

network has been developed by 10 quadratic polynomials to reduce

volume of calculations.

The R and RMSE for both training and testing stages were approx-

imately same values whereas MAPE values were obtained 0.26 and

0.74, respectively (Table 3).

Furthermore, several traditional equations were used to compare

their performances with those obtained using GMDH network. The

validation results of traditional equations were presented in Table 4.

From performances of these equations, it was found that Eq. (5)

predicted the scour depth with high error of parameters (R = 0.86,

RMSE = 67.3, MAPE = 298.4, BIAS = −59.03, and SI = 81.64). Eq. (5)

included only two effective parameters of shear strength and Froude

number on the scour depth in cohesive soils. On other hand, the

Fig. 2. Comparison between the observed and predicted non-dimensional scour

depths using the GMDH network and traditional equations.

Reynolds number has an insignificant role in fully turbulent condi-

tion. Also, Eqs. (6) and (7) provided remarkably lower error in com-

parison with Eq. (5) due to the existence of the crucial parameters

such as initial water content, clay percentage, and shear strength of

bed soils. Validation of Debnath and Chaudhuri equation has been

carried out in five ranges of IWC and Cp. Furthermore, validations of

Eqs. (8)–(12) provided quite better scour depth prediction (R = 0.88,

RMSE = 0.19, MAPE = 0.6, BIAS = 0.012, and SI = 0.2) than other

traditional equations. Traditional equations were controlled by range

of parameters in limited conditions of laboratory and field. In fact, the

GMDH network covered well restrictions of traditional equations and

it produced good agreements with observed data sets.

Also, Fig. 2 illustrates the comparison between the observed and

predicted scour depths by proposed GMDH network and traditional

equations. From Fig. 2, it can be found that performance of the GMDH

network is superior to the traditional equations.

5.2. Influences of the non-dimensional parameters on the scour depth

In this section, influences of the shear strength of cohesive soils,

initial water content, clay percentage, and Froude number on the

scour depth would be considered.

5.2.1. Influences of the shear strength of cohesive bed material on the

scour depth

Rambabu et al. [11] and Najafzadeh [14] proposed following equa-

tions to investigate influence of the shear strength on the scour depth

[11,14]:

ds

D
= 1.349S−1.134 (25)

ds

y
= 5.29S−1.27 (26)

Eqs. (25) and (26) were validated for saturated and unsaturated

cohesive soils, respectively. 24 data sets are available for testing stage

that 18 of them are related to the unsaturated data sets and the re-

minding of data sets is in saturated mode. Statistical error parameters

for Eqs. (25) and (26) were calculated to compare validation of the

empirical equations with those obtained using GMDH network. Re-

sult of performances indicated that Eqs. (25) and (26) predicted the

scour depth with lower accuracy in comparison with GMDH network

(R = 0.76, RMSE = 0.29, MAPE = 1.22, BIAS = 0.017, and SI = 0.015).

From Table 5, it is apparent that the proposed GMDH network can

be used in both saturated and unsaturated conditions of cohesive
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Table 4.

Performances result of the GMDH network and traditional equations.

Method Eq. no. R RMSE MAPE BIAS SI

GMDH network (19)–(24) 0.91 0.18 0.74 −0.045 0.22

Rambabu et al. [11] (5) 0.8637 67.3 298.4 −59.035 81.64

Molinas and Honsy

[35]

(6) 0.6 0.67 3.44 0.193 1.042

Najafzadeh [14] (7) 0.68 0.8 3.7 0.725 0.97

Debnath and

Chaudhuri [15]

(8)–(12) 0.88 0.19 0.76 0.016 0.2

Fig. 3. Modeling of influence of the saturated and unsaturated shear strength on scour

depth using GMDH network.

soils whereas Eqs. (25) and (26) were presented in saturated and

unsaturated of experimental data sets, respectively. Fig. 3 illustrates

variations of shear strength and the scour depth obtained using Eq.

(25) and GMDH network.

From this figure, predicted scour depth by Eq. (25) concentrated in

the scour depth between 0 and 0.2. It can be seemed that this equation

has not remarkable capability to illustrate variations of shear strength

and scour depth because Eq. (25) was proposed to validate the scour

depth in saturated cohesive soils (R = 0.32, RMSE = 0.82, MAPE =
3.6, BIAS = 0.68, and SI = 0.041). These results coincided promis-

ingly with Molinas and Honsy’s [35] experimental outcomes. They

concluded that the scour depth does not depend on shear strength

in saturated condition of cohesive soils. Also, Eq. (26) has predicted

the scour depth with highly abrupt in saturated conditions for three

pairs of the S/ρU2 and ds/D: 22.99, 11.6; 32.35, 6.64; 92.35, 6.11. In

fact, this equation was proposed for validation of the scour depth

in unsaturated conditions. From the indicators error parameters, Eq.

(26) cannot provide the scour depth with high accuracy in saturated

conditions of cohesive soils.

5.2.2. Influences of the initial water content and clay percentage on the

scour depth

Influence of the initial water content and clay percentage on the

scour depth has been investigated for three ranges of IWC and Cp. Fig.

4 illustrates variations of IWC with ds/D. From Fig. 4, the scour depth

increased with increase in initial water content (15%–20%) and de-

crease in clay percentage (34–41%). For 20 ≤ IWC ≤ 21, with increase

in clay percentage (35–50%), at first decreased thereafter increased.

In the second range of IWC and Cp (IWC = 27.96–35.08% and Cp =
35–100%), scour depth decreased with increase in initial water con-

tent from 29.96% to 32.17% and increase in clay percentage from 35%

to 85%. In contrast, scour depth increased with increase in IWC from

32.2% to 35.08% and decrease in clay percentage from 100% to 44%.

Fig. 4. Influence of the initial water content on the scour depth using the GMDH

network.

Fig. 5. Influence of the clay percentage on the scour depth using the GMDH network.

From the third range of IWC and Cp, it can concluded that scour

depth decreased generally with increase in IWC (36.3–42.28%) and

increase in clay percentage from 35% to 100%. Furthermore, the GMDH

predicted the scour depth in ranges of the IWC = 36.3–42.28% and Cp

= 35–100% with higher accuracy (MAPE = 1.9) than other ranges. The

MAPE values were obtained 3.28 and 2.31 for the first and second

ranges, respectively.

Also, Fig. 5 indicates the scour depth as a function of Cp for clay

soils. For cohesive soils with lower initial water content (15–21%),

the scour depth decreased meaningfully with increase in Cp from 34%

to 44%. For cohesive beds with higher initial water content (27.96–

35.08% and 36.3–42.28%), the scour depth increased steadily with

increase in Cp from 50% to 70% and 85% to 100%.

Outcomes of the GMDH network for the three ranges of IWC and

Cp can be coincided promisingly with Molinas and Honsy [35], Na-

jafzadeh [14], and Debnath and Chaudhuri [15] experimental studies.

5.2.3. Influence of the Froude number on the scour depth

Another effective parameter on the scour depth is the Froude num-

ber. In this way, comparison of the scour depth as function of the

Froude number was carried out based on three ranges of clay per-

centage (Fig. 6). From Fig. 6, the scour depth increased with increase
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Table 5.

Error parameters for influence of the shear strength on the scour depth using GMDH network and traditional equations.

Method Eq. no. R RMSE MAPE BIAS SI

GMDH (19)–(24) 0.76 0.298 1.22 0.017 0.015

Rambabu et al. [11] (25) 0.33 0.824 3.65 0.68 0.0416

Najafzadeh [14] (26) 0.44 2.86 5.91 −1 0.144

Table 6.

Sensitivity analysis for independent parameters in the testing set of the GMDH network.

Functions R RMSE MAPE BIAS SI

ds/D = f(S/ρU2, Cp , IWC) 0.71 0.37 1.73 −0.163 0.4

ds/D = f(S/ρU2, Cp , Fr) 0.86 0.24 1.11 −0.04 0.324

ds/D = f(IWC, Cp , Fr) 0.89 0.22 0.93 0.004 0.251

ds/D = f(S/ρU2, Fr, IWC) 0.7 0.528 1.36 0.267 0.77

Fig. 6. Influence of the Froude number on scour depth using the GMDH network.

in Fr values. The GMDH network provided relatively better predic-

tion of scour depth in range of Cp = 34–44% (MAPE = 1.9) than other

ranges in Fig. 6. Result of performances indicated that MAPE values

for two ranges of Cp = 50–70% and Cp = 85–100% were obtained 2.4

and 2.71, respectively. Also, Debnath and Chaudhuri [15] presented

variations of ds/D with the Fr based on Ting et al. [10] and Briaud et al.

[8] data sets. From their experiments, it was found that ds/D values

were in general agreement with that observed by Ting et al. [10] and

Briaud et al. [8] for Cp = 100% and Fr = 0.2–1.

6. Sensitivity analysis

To determine the importance of each input variable on scour

depth, sensitivity analysis was performed on the GMDH-BP. In the

analysis, one parameter of Eq. (4) was eliminated each time to evalu-

ate its effect on the output. In this way, the RMSE values are charac-

terized as common statistical errors. Accordingly, the clay percentage

(Cp) was found to be the most effective parameter (R = 0.7, RMSE

= 0.528, MAPE = 1.38, BIAS = 0.267, and SI = 0.77) on the scour

depth and whereas the non-dimensional shear strength (R = 0.89,

RMSE = 0.22, MAPE = 0.93, BIAS = 0.004, and SI = 0.251) has the

least influence on scour depth, respectively. The other effective pa-

rameters on ds/D in GMDH-BP include the Froude number and initial

water content (IWC) which were ranked from higher to lower values,

respectively (Table 6).

7. Conclusion

The GMDH-BP network was proposed as a new soft computing tool

for the scour depth prediction around a vertical pier in cohesive soils.

The GMDH network was developed using quadratic polynomial neu-

rons. Also, back propagation algorithm was utilized to yield correction

of weighting coefficients in the training stage. The crucial parameters

on the scour depth were considered using dimensional analysis. Clay

percentage, initial water content, non-dimensional shear strength of

bed soil, and the Froude number were identified as main effective

parameters that could play key role in the development of the GMDH

network. The proposed GMDH-BP network was proved to be sig-

nificantly accurate compared to the traditional equations. Also, the

efficiency of the GMDH-BP network was investigated by three classi-

fication ranges of IWC and Cp, and it was shown that the GMDH-BP

network had remarkably higher performance in IWC = 36.3–42.8%

and Cp = 35–100% thorough Eqs. (19)–(24). Furthermore, the GMDH-

BP predicted variation of ds/D with Cp in different ranges of the IWC

as well as those of previous investigations. Another contribution of

this study is the dependency of the scour depth on shear strength of

bed soil. Result of performances indicated that the GMDH network

produced better scour depth prediction than those of Eqs. (25) and

(26). Also, clay percentage was defined as the most significant pa-

rameter thorough sensitivity analysis. Thus the GMDH-BP network

has demonstrated its high capability as a powerful technique for the

scour depth prediction.

Acknowledgement

The authors are grateful to Prof. Jean-Louis Braiud, Texas A&M

University for his guidance and contributions to this paper.

Reference

[1] Laursen EM, Toch A. Scour around bridge piers and abutments. Bull. No. 4. U.S.A.:
Iowa Highway Research Board; 1956, May.

[2] Nakagawa H, Suzuki K. An application of stochastic model of sediment motion

of local scour around a bridge pier. In: Proc. 16th congress IAHR, vol. 2; 1975. p.
228–35.

[3] Ettema R. Scour at bridge piers. Report No. 216. Auckland, New Zealand: Dept.
of Civil Eng., Univ. of Auckland; 1980.

[4] Kothyari UC, Garde RJ, Ranga Raju KG. Temporal variation of scour around cir-
cular bridge piers. Journal of Hydraulic Engineering. 1992;118(8):1091–1105.

[5] Sheppard DM, Odeh M, Glasser T. Large scale clear-water local pier scour exper-

iments. Journal of Hydraulic Engineering. 2004;130(10):957–963.
[6] Briaud J-L, Ting FCK, Chen HC, Gudavalli R, Perugu S, Wei G. SRICOS: predic-

tion of scour rate in cohesive soils at bridge piers. Journal of Geotechnical and
Geoenvironmental Engineering. 1999;125(4):237–246.

[7] Briaud J-L, Ting F, Chen HC, Cao Y, Han S-W, Kwak K. Erosion function appara-
tus for scour rate predictions. Journal of Geotechnical and Geoenvironmental

Engineering. 2001;127(2):105–113.

[8] Briaud J-L, Chen HC, Nurtjahyo P. SRICOS-EFA method for complex piers in
fine grained soils. Journal of Geotechnical and Geoenvironmental Engineering.

2004;130(11):1180–1191.



M. Najafzadeh et al. / Applied Ocean Research 40 (2013) 35–41 41

[9] Vallejo LE, Mawby R. Porosity in fluence on the shear strength of granular

material–clay mixtures. Engineering Geology. 2000;58(2):125–136.
[10] Ting FCK, Briaud J-L, Chen HC, Gudavalli R, Perugu S, Wei G. Flume tests for scour

in clay at circular piers. Journal of Hydraulic Engineering. 2001;127(11):969–
978.

[11] Rambabu M, Narasimha Rao S, Sunder V. Current-induced scour around a verti-

cal pile in cohesive soil. Ocean Engineering. 2003;30(4):893–920.
[12] Ansari SA, Kothyari UC, Ranga Raju KG. Influence of cohesion on scour around

bridge piers. Journal of Hydraulic Engineering. 2003;40(6):717–729.
[13] Debnath K, Aberle J, Nikora V, Westrich B, Muste M. Erosion of cohesive sed-

iments: re-suspension, bed load, and erosion patterns from field experiments.
Journal of Hydraulic Engineering. 2007;133(5):508–520.

[14] Najafzadeh M. Experimental and numerical study of local scour around a vertical
pier in cohesive soils. MS thesis. Kerman, Iran: Shahid Bahonar University; 2009.

[15] Debnath K, Chaudhuri S. Laboratory experiments on local scour around cylinder

for clay and clay–sand mixed beds. Engineering Geology. 2010;111(12):51–61.
[16] Azamathulla HMd, Deo MC, Deolalikar PB. Neural networks for estimation of

scour downstream of a ski-jump bucket. Journal of Hydraulic Engineering, ASCE.
2005;131(10):898–908.

[17] Azamathulla HMd, Deo MC, Deolalikar PB. Alternative neural networks to
estimate the scour below spillways. Advances in Engineering Software.

2008;38(8):689–698.

[18] Guven A, Gunal M. Genetic programming approach for prediction of local scour
downstream of hydraulic structures. Journal of Irrigation and Drainage Engi-

neering. 2008;134(2):241–249.
[19] Azamathulla HMd, Ghani AA, Zakaria NA, Lai SH, Chang CK, Leow CS. Genetic

programming to predict ski-jump bucket spillway scour. Journal of Hydrody-
namics. 2008;20(4):477–484.

[20] Azamathulla HMd, Ghani AA, Zakaria NA, Guven A. Genetic programming to pre-

dict bridge pier scour. Journal of Hydraulic Engineering, ASCE. 2010;136(3):165–
169.

[21] Ayoubloo MK, Etemad-Shahidi A, Mahjoobi J. Evaluation of regular wave scour
around a circular pile using data mining approaches. Applied Ocean Research.

2010;32(1):34–39.
[22] Etemad-Shahidi A, Yasa R, Kazeminezhad MH. Prediction of wave-induced scour

depth under submarine pipelines using machine learning approach. Applied

Ocean Research. 2011;33:54–59.
[23] Azamathulla HMd, Guven A, Demir YK. Linear genetic programming to scour

below submerged pipeline. Ocean Engineering. 2011;38(8/9):995–1000.
[24] Amanifard N, Nariman-Zadeh N, Farahani MH, Khalkhali A. Modeling of multiple

short-length-scale stall cells in an axial compressor using evolved GMDH neural
networks. Energy Conversion and Management. 2008;49(10):2588–2594.

[25] Najafzadeh M, Barani G-A. Comparison of group method of data handling

based genetic programming and back propagation systems to predict scour
depth around bridge piers. Scientia Iranica, Transactions A: Civil Engineering.

2011;18(6):1207–1213.
[26] Najafzadeh M, Azamathulla HM. Group method of data handling to predict

scour depth around bridge piers. Neural Computing and Application; in press.
doi:10.1007/s00521-012-1160-6.

[27] Najafzadeh M, Barani G-A, Azamathulla HMd. Prediction of pipeline scour depth
in clear-water and live-bed conditions using group method of data handling.

Neural Computing and Application; in press.

[28] Najafzadeh M, Barani G-A, Hessami Kermani MR. Abutment Scour in clear-water

and live-bed conditions by GMDH network. Water Science and Technology, IWA;

in press.
[29] Najafzadeh M, Barani G-A, Hessami Kermani MR. GMDH based propagation

algorithm to predict abutment scour in cohensive soils. Ocean Engineering.
2013;59.

[30] Srinivasan D. Energy demand prediction using GMDH networks. Neurocomput-

ing. 2008;72(1–3):625–629.
[31] Witczak M, Korbicz J, Mrugalski M, Patton R. A GMDH neural network-based

approach to robust fault diagnosis: application to the DAMADICS benchmark
problem. Control Engineering Practice. 2006;14(6):671–683.

[32] Mehrara M, Moeini A, Ahrari M, Erfanifard A. Investigating the efficiency in oil
futures market based on GMDH approach. Expert Systems with Applications.

2009;36(4):7479–7483.
[33] Kalantary F, Ardalan H, Nariman-Zadeh N. An investigation on the Su-NSPT cor-

relation using GMDH type neural networks and genetic algorithms. Engineering

Geology. 2009;104(1/2):144–155.
[34] Honsy M. Experimental study of scour around circular piers in cohesive soils.

PhD dissertation. Fort Collins, CO: Civil Engineering Department, Colorado State
University; 1995. p. 117.

[35] Molinas A, Hosny MM. Experimental study on scour around circular piers in
cohesive soil. Publication No. FHWA-RD-99-186. McLean, VA: Federal Highway

Administration. U.S. Department of Transportation;1999.

[36] Ettema R, Melville BW, Barkdoll B. Scale effect in pier-scour experiments. Journal
of Hydraulic Engineering. 1998;124(6):639–642.

[37] Ettema R, Kirkil G, Muste M. Similitude of large-scale turbulence in experiments
on local scour at cylinders. Journal of Hydraulic Engineering. 2006;132(1):33–

40.
[38] Chiew YM. Local scour at bridge piers. Rep. No. 355. New Zealand: School of

Engrg., The University of Auckland.

[39] Ivakhnenko AG. Polynomial theory of complex systems. IEEE Transactions on
Systems, Man, and Cybernetics. 1971.

[40] Ivakhnenko AG, Ivakhnenko GA. Problems of further development of the group
method of data handling algorithms. Part 1. Pattern Recognition and Image

Analysis. 2000;110.
[41] Iba H, de Garis H. Extending genetic programming with recombinative guid-

ance.In: P Angeline, K Kinnear (Eds.) Advances in Genetic Programming Cam-

bridge: MIT Press; 1996, vol. 2.
[42] Onwubolu GC. Design of hybrid differential evolution and group method in

data handling networks for modeling and prediction. Information Sciences.
2008;178:3618–3634.

[43] Sakaguchi A, Yamamoto T. A GMDH network using back propagation and its
application to a controller design. IEEE International Conference on Systems,

Man, and Cybernetics. 2000;4:2691–2697.

[44] SJ Farlow (Ed.) Self-organizing method in modeling: GMDH type algorithm.
Marcel Dekker Inc.; 1984.

[45] Sanchez E, Shibata T, Zadeh LA. Genetic algorithms and fuzzy logic systems.
World Scientific; 1997.

[46] Oh S-K, Pedrycz W. Genetic optimization-driven multilayer hybrid fuzzy neural
networks. Simulation Modelling Practice and Theory. 2006;14:597–613.

[47] Oh S-K, Pedrycz W, Park H-S. Multi-layer hybrid fuzzy polynomial neural net-
works: a design in the framework of computational intelligence. Neurocomput-

ing. 2005;64:397–431.


	GMDH to predict scour depth around a pier in cohesive soils
	1 Introduction
	2 Review on pier scour in cohesive soils
	3 Data collection
	4 Principle of the GMDH network
	4.1 Application of BP Algorithm in the topology design of GMDH network

	5 Results and discussion
	5.1 Performances of the GMDH network and traditional equations
	5.2 Influences of the non-dimensional parameters on the scour depth

	6 Sensitivity analysis
	7 Conclusion
	Acknowledgement
	Reference


