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Abstract 

Scouring in the channel contractions occurs due to the flow concentration within them inducing 

excessive bed shear stress. This is a complex process, so it is difficult to describe it through a 

general empirical model, the present research work describes contemporary conceptual 

relationships to estimate the local scour depth under equilibrium and clear water conditions in 

rectangular channels. Incidentally, Gene-Expression Programming (GEP), Evolutionary 

Polynomial Regression (EPR) and Model Tree (MT) based formulations were utilized to predict 
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the scour depth at long contractions. The input variables comprising average flow velocity, 

critical threshold velocity of sediment movement, flow depth, median particle diameter, 

geometric standard deviation, and un-contracted and contracted channel widths, were used to 

feed the applied models. The performances of the developed were then compared with those 

calculated using existing scour prediction equations. The results showed that the developed MT 

approach in terms of linear relationship could predict the scour depth more precisely than GEP, 

EPR and the traditional equations. What is more, dimensionless parameter of h1/b1 (ratio of 

upstream flow depth to un-contracted channel width) was determined as the most influential 

variable in predicting the scour depth in long contractions. 

Keywords: Evolutionary polynomial regression, Gene-Expression programming, Long 

contraction, Model tree, Scouring process 

INTRODUCTION 

Scouring phenomena occurs when cross-section of a waterway or a channel is declined 

due to the existence of natural features or man-made structures. In fact, the reduction of cross 

sectional area leads to significant rise in flow velocity due to the flow conservation. This can 

cause to provide the conditions of more sediment transport than entering the area and, 

consequently it is the leading factor of decreasing the bed sediment level in the contracted cross-

section (Dey and Raikar 2004). This process is rudimentary introduced as “contraction scour.” 

Contraction of flow is appeared where bridges, weirs, and barrages, etc are performed. The 

channel contraction might be designed as long and short contractions. In fact, definition of the 

type of contractions is contingent upon the length )(L  and width )( 1b  of contracted zone. 

According to Komura (1966), a contracted cross section would be considered as long if 1/ 1 bL
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, whereas Webby (1984) proposed it as 2/ 1 bL . Furthermore, Raikar (2004) suggests 1/ 1 bL  

as long contraction criteria. The flow velocity in the contracted cross sections increases due to 

flow area reduction and bed shear stress increasing. Hence, bed sediment in contracted zone is 

exposed to the scour process. 

Scouring phenomena is classified into two different groups, namely clear-water and live-

bed processes (Dey and Raikar 2005). In clear-water condition, sediment particles are removed 

from the scour hole but not supplied by the approaching flow field, whereas live-bed scour is 

observed when there is a remarkable sediment transport process caused by the approaching flow 

fields. Scouring in a contracted zone is occasionally investigated regarding a configuration of 

rectangular long contraction, as sketched schematically in Figure 1. From Figure 1, owing to the 

straightforward geometrical feathers of the problem, a wide range of analytical researches to 

acquire the maximum scour depth with a permissible degree of accuracy in long contractions 

have triumphantly been conducted. 

Review of literature about scouring process in long contractions shows that a lot of 

laboratory works have been conducted to characterize effective variables on the scouring 

phenomena in channel contraction (Straub 1934; Komura 1966; Gill 1981; Webby 1984; Lim 

1993; Lim and Cheng 1998; Raikar 2004; Dey and Raikar 2005; Ghazvinei et al. 2016). 

Although extractions of these experimental studies were documented as empirical equations 

including effective parameters, these formulations cannot be taken into account as general 

approaches bringing an adequate prediction of the scour depth with a permissible precision. This 

is crucially the mercy of highly complex scour process. 

On the verge of evolutionary computing and intelligent models, different heuristic 

approaches e.g. artificial neural networks (ANNs), adaptive neuro-fuzzy inference system 
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(ANFIS), support vector machines (SVM), gene-expression programming (GEP), group method 

of data handling (GMDH), model tree (MT), and evolutionary polynomial regression (EPR) have 

been prosperously employed to simulate the scour around hydraulic structures (e.g. Guven and 

Gunal 2008a; Ayoubloo, Etemad-Shahidi, and Mahjoobi 2010; Azamathulla et al. 2010; Etemad-

Shahidi and Ghaemi 2011; Najafzadeh, Barani, and Azamathulla 2013; Najafzadeh, Barani, and 

Hessami-Kermani 2014). In case of the scour phenomena in long contractions, Najafzadeh, 

Etemad-Shahidi, and Lim (2016) employed the SVM and ANFIS methods for predicting the 

maximum scour depth at long contractions. They found that the proposed models showed more 

efficient performances compared with the empirical equations. 

In this way, to achieve general equations simplifying evaluation of the scour depth in 

long contraction, the GEP, MT, and EPR models are developed based on experimental datasets. 

Moreover, efficiency equations extracted by the proposed models are compared with several 

empirical equations based regressive methods. 

EXISTING EQUATIONS FOR PREDICTING THE SCOUR 

DEPTH IN LONG CONTRACTIONS 

Conventional regression-based approaches involve the observations of the scour depths at 

existing bridge sites, sharp bends, and contractions or, other locations where the natural channel 

configuration is comparable to the expected configuration at the bridges site. Since 1934, 

experimental studies in this area have been initially introduced by Straub (1934). He investigated 

the sediment transportation process for prediction of scour depth in contracted and un-contracted 

widths of rectangular channels. Eventually, he put forward an empirical equation for evaluation 

of the scour depth based on the Manning and Du Boy equations: 
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where sd , h , b , and  denote the scour depth, flow depth, channel width, and bed shear 

stress, respectively. Additionally, the subscripts 1 and 2 indicate the un-contracted and 

contracted cross sections, respectively; and subscript c stands for the critical condition for 

incipient motion of sediment particles. 

Laursen (1963) proposed following formulation: 
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in which Q =flow rate; n =Manning coefficient;  =0.59-0.69; and 
1 =0.066-0.367. 

Laursen (1963), assumed that the effects of the flow rate over the flood plains is 

negligible in a compound channel, so, identified that 21 QQ  and 21 nn   
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Later, Komura (1966) conducted experimental studies to appraise the impacts of 

sediment particles grading on the scouring process in long contractions, so, proposed an equation 

based on properties of upstream flow conditions, bed sediment size, and channel geometry as, 
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where, 50d = median particle diameter, CFr = Froude number due to the approaching flow 

velocity to initiate sediment particles motion within un-contracted cross section of channel, and 

g  = geometric standard deviation. What is more, the CFr  parameter is computed as, 

1.hg

U
Fr C

C 

 (5) 

where CU  and g  are the critical velocity of sediments and gravitational acceleration, 

respectively. 

Gill (1981) presented a formula by assuming that the sediment rate is proportional to the 

bed and critical shear stress: 
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Lim (1993) proposed an empirical equation of equilibrium scour depth in long 

contractions for both the clear-water and live-bed scour conditions, as: 
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where 0Fr is the densimetric flow Froude number defined as, 
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in which 1U , S , and w are the average flow velocity, and mass density of sediments 

and water, respectively. 
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Lim and Cheng (1998) proposed a simple analytical-based equation for both live-bed and 

clear water conditions regarding the continuity condition between flow and sediment transport. 

They have professed that the maximum scour depth is only a function of
12 / bb . Li (2002) carried 

out laboratory experiments to detect the effective variables on the maximum scour depth in long 

contractions with cohesive bed sediments. The results showed that the Froude number is the 

most influential parameter on the scouring, while the geometric properties of the contracted 

zone, e.g. length and width presented less effect in this regard. Overall, Dey and Raikar (2005) 

planned comprehensively laboratory investigations of the scour depth in long contractions. From 

their experiments, it was found that the scour depth gradually plummets with an increase in the 

densimetric Froude number for greater values of 12 / bb . 

Moreover, a new empirical equation for the prediction of the maximum scour depth under 

clear-water condition was proposed as (Dey and Raikar 2005), 
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in which, ecFr1 = excess approaching flow Froude number: 
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where  0

111 21



  s

cc

d

UUUUec UUU  is the excess approaching flow velocity. 

DEFINITION OF INPUT-OUTPUT VARIABLES 
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In experimental or field studies of the scour depth in long contractions, the chief 

parameters affecting the process are the characteristics of bed sediments, approaching flow 

conditions, and geometry of contracted and un-contracted cross sections (Straub 1934; Komura 

1966; Gill 1981; Webby 1984; Lim 1993; Lim and Cheng 1998; Li 2002; Raikar 2004; Dey and 

Raikar 2005; Oh 2009). So, the functional relationship between the scour depth and effective 

parameters can be expressed as follows: 

),,,,,,,,,,( 211150 swgcs bbhgUUdfd 
 (11) 

where is the kinematic viscosity of water. Recent studies show that the artificial 

intelligence models feeding with non-dimensional parameters present more accurate results than 

those obtained using dimensional parameters, so, dimensional analysis is carried out using the 

Buckingham  theorem for reducing the influential parameters (e.g., Azmathullah, Deo, and 

Deolalikar 2005; Guven, Azamathulla, and Zakaria 2009; Azamathulla et al. 2010; Etemad-

Shahidi, Yasa, and Kazeminezhad 2011; Najafzadeh, Barani, and Hessami-Kermani 2014). So, 

the scour depth, sd , was normalized using 1b  as follows: 

).).1)((/,/,,/,/,/(/ 501112111501 dgUUUbbbhbdfbd wscgs  
 (12) 

Where 501 .).1)((/ dgU ws   is the densimetric Froude number )( 0Fr . 

The non-dimensional parameters of Eq. (12) were used as input and output parameters for 

feeding the applied models. 

DATASETS DESCRIPTION 
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204 data patterns collected from the Komura (1966), Gill (1981), Webby (1984), Lim 

(1993), Dey and Raikar (2005), and Lim (2013) (unpublished data sets) were used for 

establishing and testing the applied models. The used data set purely belong to the clear-water 

circumstances )1/( 1 cUU and rectangular channels with the presence of long contractions. Out 

of the total data set, roughly 67% and 33% were selected randomly to perform training and 

testing stages, respectively. The ranges of parameters used for the scour depth modeling are 

presented in Table 1. 

MODEL DESCRIPTIONS 

Development of the GEP Model 

Gene expression programming (GEP) is known as extension of the genetic programming 

(GP) approach, that evolves computer programs in forms of mathematical expressions, decision 

trees, and logical expressions (Ferreria 2001; Ferreria 2006; Azamathulla 2012; Azamathulla and 

Haque 2012). In addition, the GEP model has attracted the ferociously great attention of 

designers in hydraulic issues. This study represents GEP-based formulation of maximum scour 

depth predicting in long contractions. The GEP approach is coded in forms of linear 

chromosomes, which are then expressed into Expression Trees (ETs). 

In fact, the ETs are sophisticated computer programming which are usually evolved to 

solve a practical problem, and are selected accordingly to their fitness at solving that problem 

(Ferreria 2006). 

Development of the GEP approach includes five steps (Ferreria 2006): 
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In the first instance, the fitness function (fi), of an individual program (i), is selected. This 

item is evaluated as follows: 





tC

j

jjii TCMf
1

),( )(

 (13) 

in which M , ),( jiC  , and jT  are the selection range, value returned by the individual 

chromosome i for fitness case j, the largest value for fitness case j. 

In the second step, the set of terminals T and the set of function F were selected to 

generate the chromosomes. In this study, the terminal set includes six independent parameters in 

form of 

 0112111501 ,/,,/,/,/)/( FrUUbbbhbdbdT cgs 
 (14) 

In this way, it is necessary to peer review previous investigations of scour problems at 

long contractions. Additionally, four basic operators (+,-,*,/) and basic mathematical functions 

(√, power, sin, cos, exp) were applied to predict the scour depth in long contractions. In fact, 

selection of basic operators and mathematical function are at the mercy of basic form of 

empirical equations. The third step is to configure the chromosomal architecture. In the further 

step, liking function is selected. Eventually, for the fifth stage, the sets of genetic operators 

which case variation and their rate are selected. Further details about the GEP model 

development might be found in e.g. Ferreria (2006). 

Furthermore, the functional set and the operational parameters applied in the proposed 

GEP models are presented in Table 2. The best formulation of GEP model for evaluation of 

equilibrium scour depth at long contractions, as a function of input parameters, is acquired as, 
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In addition, the expression tree of the above formulation was illustrated in Figure 2. 

From Figure 2, it is conceivable that each tree structure introduces a gene and consequently, 

each gene was composed of mathematical operators, input variables, as well as constant values. 

Overall, summation of expression trees yields the most recent equation [Eq.(15)] and incidentally 

includes three genes. 

Development of the MT Model 

Among the data mining techniques, model trees generalize the concept of the 

classification and regression tree. They are used to solve the problem by dividing it into several 

sub-problems (sub-domains) tasks and the result is a combination of these sub-problems 

(Etemad-Shahidi, Yasa, and Kazeminezhad 2011). Classification trees classify data records by 

sorting them down the tree from the root node to some leaf nodes (Quinlan 1992; Wang and 

Witten 1997; Etemad-shahidi and Ghaemi 2011). In this way, MT models can be applied to solve 

continuous class problems and yield a structural representation of the data sets using the 

piecewise linear models to approximate nonlinear relationships. As a classic example, the tree-

building procedure within four linear regression models and knowledge extraction from the 

structure for corresponding sub-domains was illustrated in Figure 3A. Furthermore, a general 

tree structure of MT approach was sketched in Figure 3B. From Figure 3, input space has been 

separately divided into six segments. In each section, there are several points which a linear 

regression can be produced. In fact, all models were circumstantially generated. As a classic 

example, there are two input variables, as X1 and X2 seen in Figure 3, If X2 becomes bigger than 
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2.5 and X1 becomes smaller than 2, then model3 is made. Through MT approach, the basic tree is 

firstly generated using the splitting criterion of the standard deviation reduction (SDR) factor: 

)()( i

i

i
Esd

E

E
EsdSDR 

 (16) 

in which E , sd , and iE  are the set of examples (data records) that reach the node, the 

set that results from splitting the node according to the chosen attribute (parameter), and standard 

deviation, respectively. The M5 utilizes the sd parameter as an error measure of the class values 

that reach a node. Testing all parameters at a node, it calculates the expected reduction in error 

and then selects the parameter that maximizes SDR. This process stops when the standard 

deviation reduction becomes less than a certain percent of the standard deviation of the original 

dataset or when only a few data records remain (Quinlan 1992; Wang and Witten 1997). Then, a 

linear regression model is developed for each sub-domain. Merely the data in connection with 

the variables tested in that sub-domain are applied in the regression. Other descriptions of the 

MT model were presented in literature (e.g., Etemad-shahidi and Ghaemi 2011; Pal et al. 2012). 

In this way, the proposed MT approach has six input and one output parameters. 

MT technique was developed using 3 rules in form of linear equations. Meantime, 

schematic diagram of tree-building of the MT approach in form of rules for prediction of the 

scour depth at long contractions was illustrated in Figure 4. 

These linear equations and their corresponding rules were given Table 3. As seen in 

Table 3, Eqs.(17)-(18) include two splitting parameters of 12 / bb  and cUU / . 12 / bb
 
variable is 

the splitting parameter for Eq.(17) and its value was fixed 0.55. In addition, for Eq.(17), 
value of 

splitting is 0.724.
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Development of the EPR Model 

EPR is generally introduced as a non-linear stepwise regressive approach, producing 

mathematical formulas with persuasive level of accuracy in order to find either mathematical 

patterns or dependency between input and output of complex systems (Giustolisi and Savic 

2006). 

In term of mathematical function, Giustolisi and Savic (2006) proposed the general 

expressions obtained by EPR which are exhaustively included those of a number of additive 

terms multiplied by as many coefficients mentioned as, 
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 (20) 

where m, Xi , and Ŷ are the maximum number of additive terms, input variables, and 

final output of EPR, respectively. Additionally, both of function f and exponents of variables are 

opted by the user. 

The genetic algorithm is employed to select the exponents ES(j,i) from among the values 

in set EX. This means that an integer coding of possible alternative exponents ES(j,i) is adopted 

to obtain non-linear expression. Moreover, It is worthwhile to consider which, if the set of 

exponents contains zero and ES(j,i) = 0, the relevant input eliminates from the final 

mathematical function. Ergo, simple structure of Eq.(19) is able to benefit exceedingly from 

persuasive level of generalization to perceive either patterns or physical meaning of observed 

datasets. 

An improvement of EPR model, as an ingredient approach, is implemented into linear 

equations with respect to coefficient (aj) in a way that they are predicted making use of classical 
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numerical regression such as least squares techniques. The search space for EPR-MOGA is 

fundamentally defined by user in terms of the basic structure of mathematical expressions, the 

maximum number of additive terms (m), adjusting a set of exponents (EX) and number of 

candidate explanatory variables (i.e., k) (Laucelli and Giustolisi 2011). 

Apparently, Laucelli and Giustolisi (2011) have designed the OPTImized Multi-

Objective Genetic Algorithm as a model search which is on the basis of Pareto dominance 

criterion so as to carry out multi-objective optimization approach (Pareto 1896; Van Veldhuizen 

and Lamont 2000). 

EPR-MOGA explores the space of m-term mathematical expressions with the different 

degree of complexity by taking into account three objectives. The first objective is that accuracy 

of proposed model is maximized and the minimization of the number for model coefficients is 

the second objective. Ultimately, the number of actually applied input variables for mathematical 

model should possibly be minimized (Laucelli and Giustolisi 2011). 

In term of application of EPR, a functional relationship in Eq. (20) for predicting the 

scour depth in long contraction is generated. Therefore, 150 / bd , 11 /bh , 12 /bb , cUU /1 , 0Fr  and g  

have deliberately been assigned as input parameters. Furthermore, the range of exponents (EX) 

used to develop an optimal expression is between -2 and 2 [-2; -1.5; -1; -0.5; 0; 0.5; 1; 1.5; 2]. 

Three polynomial terms (m = 3) is adjusted without considering a bias (a0=0) and in addition to 

the integrating only positive coefficients (aj > 0). 

Among good many of models extracted by EPR-MOGA-XL, the following equation was 

choosen in order to meet an acceptable level of model accuracy: 
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PERFORMANCE EVALUATION CRITERIA 

Correlation coefficient (R), root mean square error (RMSE), coefficient of determination 

(CoD), and discrepancy ratio (DR) were used to evaluate the performances of models: 
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where M is the number of data and 1/bds  is the average value of observations. 

RESULTS AND DISCUSSIONS 
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In this section, outperformances of training and testing stages would be discussed. 

Conceivably, an argument in terms of evaluation of empirical equations are made. 

MODELS IMPLEMENTATION 

Error statistics computed by applied models are presented for the both training and 

testing stages in Table 4. Attending to the training results, in terms of R and CoD assessment, it 

is seen that MT model produces more accurate results (CoD=0.631 and R=0.797), compared 

with EPR (CoD=0.620 and R=0.788) and GEP (CoD=0.29 and R=0.77) approaches. Moreover, 

the equation given by MT model predicted the scour depth with RMSE of 0.036 and DR of 1.283 

than those obtained using EPR (RMSE=0.0367 and DR=1.301) and GEP (RMSE=0.037 and 

DR=1.28) models. Figure 5 illustrates the scatter plots of the observed scour depths versus 

predicted ones for the EPR, MT, and GEP models during the training stage. In terms of 

qualitative comparisons, all intelligent models indicated a pretty illustrative over-prediction for 

observed ds/b1 ranged between 0 and 0.05. By the way, predicted values of ds/b1 are out of +20% 

range. What is more, Eq.(15), produced by GEP, has the highest level of under-prediction being 

seen out of -20% line when compared with other approaches. 

MODELS TESTING 

In the testing stage, it can be noted that the EPR model predicted the scour depth with 

higher accuracy (CoD=0.026 and R= 0.903) than those obtained by MT (CoD=0.756 and R= 

0.874) and GEP (CoD=0.8 and R= 0.89) techniques. Furthermore, RMSE and DR values fixed 

by the EPR model are 0.0263 and 1.13, for MT approach are 0.0296 and 1.25, and for GEP are 

0.027 and 1.18, respectively. The scatter plots of the observed vs. predicted scour depths are 

presented in Figure 6 for the test period. Through the testing stage, Figure 6 provided the 
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readers with the information about the obvious over-prediction for MT and EPR when observed 

ds/b1 is between 0 and 0.05. In fact, several points of predicted ds/b1 are out of upper limit of 

error band. Put it another way, it is crystal clear that non-dimensional scour depth prognosticated 

by MT, observed out of lower error band, had more comparatively under-estimation than EPR 

and GEP models. 

In order to compare the results of the applied models with traditional ones, an argument 

was released. The empirical equations presented by Eq.(3) (Laursen 1963), Eq.(4) (Komura 

1966), Eq.(6) (Gill, 1981) and Eq.(7) (Lim 1993) were used in this regard, to evaluate the scour 

depth under the equilibrium and clear water conditions in the studied rectangular channels. From 

Table 4, it is vividly evident that the Eq. (3) proposed by Laursen (1963), produced the lower 

error of scour depth evaluation with RMSE of 0.0543 and DR of 1.074 compared with the other 

conventional models. On the other hand, Eq.(3) including three input parameters, as FrC, σg, and 

b2/b1, prognosticated the scour depth with more permissible accuracy (RMSE=0.0833 and 

DR=1.678) than Eq.(6) (RMSE=0.2 and DR=3.307), Eq.(7) (RMSE=0.134 and DR=2.32). 

Overall, comparison of the proposed models with traditional models reveals that the intelligent 

approaches presenting more accurate results than the traditional relationships is occasionally 

encountered with crucial drawbacks corresponded to the datasets range. It is conceivable that 

different scales of experimental investigations affect the efficiency of the models. In contrast, 

one of the most reasonable assumptions to apply intelligent approaches in hydraulic engineering 

fields is that the influences of various scales on performing the predictive data-driven approaches 

and regression-based techniques are neglected. By the way, it would presumably plummet an 

acceptable level of precision. The scatter plots between the observed and predicted scour depths 

of the empirical equations are displayed in Figure 7. From Figure 7, it can be vividly professed 



 

18 

that merely a good many of the scour depth predicted by Eq.(3), is out of upper error band. 

Conversely, ds/b1 predicted by other intelligent models have provided an extremely aggressive 

increase in over-prediction, as points seen in out of upper error band line. 

RELATIVE SIGNIFICANCE OF INPUT VARIABLES 

To assign the comparative influence of each input variable on the scour depth, the EPR 

model was selected to perform a sensitivity analysis. The analysis was conducted such that, one 

parameter of Eq. (12) was eliminated each time to evaluate the impact of that input on output. 

Results of the analysis demonstrated that h1/b1 is the most effective parameter on the maximum 

scour depth with R of 0.385 and RMSE of 0.0557. Furthermore, with regarding the other 

statistical parameters, EPR has produced a considerably large error (CoD = -5.248 and DR = 

1.667) by neglecting h1/b1as a input parameter. Conversely, b2/b1 has the lowest level of impacts 

on the ds/b1 due to the fact that coefficient correlation (R) and root mean square error (RMSE) 

yielded 0.524 and 0.0513, respectively. What is more, CoD (-1.289) and DR (1.458), values are 

an indicative of this trend. The other influential parameters on the ds/b1 include d50/b1, g  , 

U1/Uc and Fr0 which are ranked from higher impacts to lower ones, respectively. The error 

statistics yielded using the sensitivity analysis are given in Table 5. 

CONCLUSION 

In the present research, the EPR, MT, and GEP approaches were developed to evaluate 

scour depth at equilibrium and clear water conditions in rectangular channels. Performances of 

the proposed techniques for training and testing stages were carried out using experimental 

datasets collecting from literature. Beside, empirical equations, as proposed by Laursen, Komura, 
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Gill and Lim were utilized to compare results with the proposed models. Regarding the EPR, 

MT, and GEP, to obtain the optimum functions on the basis of the best formulations, a 

dimensional analysis was used to extract parameters affecting the scour process at long 

contractions under clear water conditions. 

From the statistical error parameters, it can be concluded that MT method with 3 rules in 

form of 3 linear equations for training stage captured the scour depth at long contractions with 

more efficient performance compared with EPR and GEP approaches. In addition, performance 

of the testing stages demonstrated that EPR method predicted the scour depth with more precise 

estimation in terms of RMSE (0.026) and CoD (0.903) than MT and GEP techniques. 

Apparently, performances of empirical equations illustrated that Eq. (3), proposed by Laursen 

(1963), provided relatively lower error of scour depth predictions in terms of RMSE and CoD 

compared with the other traditional models. Accordingly, it was generally professed that 

evaluation of the scour depth at contracted cross-section making use of empirical equations, on 

the basis of CoD and R parameters, indicated remarkably higher level of error than the proposed 

techniques. Conspicuously, the quantitative results of the sensitivity analysis indicated that h1/b1 

is the most important parameter in the modeling of ds/b1 by the EPR model. 

To come up with a conclusion, the trend is towards making a wise decision whether 

taking head of pros and cons of applying the proposed approaches had been successfully 

persuasive or not. It is about time equations extracted by intelligent models were recruited in the 

right circumstances in a way that misunderstanding of outperformances are not inevitably 

emerged even when field datasets of scour depth in rectangular channels with long contracted 

zones have been applied to validate empirical equations. By the way, applying the proposed 

intelligent techniques in form of the best formulations has a prominent role to play in the 
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achieving astonishing and outstanding successes for practical uses. Another plus side of this 

research is that explicit mathematical expressions extracted in the current research work can be 

taken into account as reasonably valuable approaches for specialists who intend to design 

rectangular channels being exposed to the scouring phenomena. From a logical viewpoint, to 

gain a permissible precision of the scour depth, ranges of variables, conditions of upstream flow 

and bed sediment embedded in contracted zones were strongly advised to be considered. Even 

though, empirical equations are extracted in the controlled conditions and consequently suffer 

relatively from covering limited ranges of experimental datasets but conventional models can be 

considered as a straightforward pathway to predict the scour depth at long contractions as well as 

proposed intelligent approaches. 
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Table 1. Ranges of grouped input and output parameters for scour depth modeling 

Parameters Training Testing 

150 / bd
 

0.000875–0.0237 0.000875–0.2375 

11 /bh  
0.0509–0.442 0.0360–0.32 

12 / bb  
0.25–4.062 0.33–4.062 

0Fr
 

0.878–3.504 1.08–3.28 

cUU /1  
0.321–1 0.431–1 

g
 

1.065–3.61 1.065–3.61 

ws  /
 

2.65 2.65 

1/bds  
0.00131–0.29 0.0118–0.256 
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Table 2. Parameters of the optimized GEP model 

Parameters Description of parameters Setting of parameters 

P1 Function set +,,×,/,exp, power 

P2 Mutation rate 0.138 

P3 Inversion rate 0.546 

P4 One point and two point recombination rate 

respectively (%) 

0.277 

P5 Gene recombination rate 0.277 

P6 Gene transportation rate 0.277 

P7 Maximum tree depth 6 

P8 Number of Gene 3 

P9 Number of Chromosomes 30 
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Table 3. General Feature of the proposed MT approach 

Rules of MT 

approach 

Linear Models(LM) Eq.no 

Rule:1 IF b2/b1 

> 0.55 THEN 

LM1 

 

   150

0121

/733.4/0366.00157.0

0785.0/0031.00908.0/
:1

bdUU

Frbbbd
LM

cg

s






 

(17) 

Rule:2 IF U/Uc 

>0.724 THEN 

LM2 

 

   12

111

/3218.0/0633.0

/6584.01374.0/:2

bbUU

bhbdLM

c

s





 

(18) 

Rule: 3 0937.0/:3 1 bdLM s  
(19) 
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Table 4. Statistical parameters of the training and testing data set for difference models 

Training Stage R CoD RMSE DR 

GEP 0.77 0.29 0.037 1.28 

MT 0.797 0.631 0.0362 1.283 

EPR 0.788 0.621 0.0367 1.301 

Testing Stage 

 R CoD RMSE DR 

GEP 0.89 0.8 0.027 1.18 

MT 0.874 0.756 0.0296 1.25 

EPR 0.903 0.0263 0.0263 1.13 

Eq.(3) (Laursen, 1963) 0.685 0.646 0.0543 1.074 

Eq.(4) (Komura, 1966) 0.75 0.633 0.0833 1.678 

Eq.(6) (Gill, 1981) 0.693 0.138 0.200 3.307 

Eq.(7) (Lim, 1993) 0.720 0.443 0.134 2.32 



 

27 

Table 5. Sensitivity analysis for independent parameters 

Model Input parameters R CoD RMSE DR 

 )/,,,/,/(/ 1012111 cgs UUFrbbbhfbd 
 

0.442 4.626 0.0548 1.662 

bh /1  
)/,,,/,/(/ 10121501 cgs UUFrbbbdfbd 
 

0.385 5.248 0.0557 1.667 

b2/b1 )/,,,/,/(/ 10111501 cgs UUFrbhbdfbd 
 

0.524 1.289 0.0513 1.458 

 )/,,/,/,/(/ 1012111501 cs UUFrbbbhbdfbd 
 

0.461 2.576 0.0534 1.509 

 )/,,/,/,/(/ 112111501 cgs UUbbbhbdfbd 
 

0.485 2.682 0.0528 1.523 

 ),,/,/,/(/ 012111501 Frbbbhbdfbd gs 
 

0.479 2.215 0.0529 1.530 
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Figure 1. Schematic of a long rectangular channel contraction at equilibrium scour condition: (a) 

top view; and (b) side view. 
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Figure 2. Optimal expression tree (ET) structures for the GEP model for prediction of the scour 

depth at long contractions with the actual input variables are the d0=d50/b1, d1= b2/b1, d2= Fr0, 

d3= h1/b1, d4=𝜎𝑔, and d5=U/Uc; (A) C9=5.77, C4=-6.38; (B) C1=-8.24, C5=-5.56; (C) C8= -

492.74, C9= -5.34, C4= 0.17. 
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Figure 3. Splitting the input space and prediction by the model tree for a new data record: (A) 

splitting of the input space (X1 × X2) by the M5 model tree algorithm; (B) predicting a new data 

record by the model tree. 
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Figure 4. Proposed MT structure for prediction of the local scour depth at long contractions. 
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Figure 5. Scatter plot of observed and predicted scour depth at equilibrium and clear water 

conditions for training of the proposed models. 
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Figure 6. Scatter plot of observed and predicted scour depth at equilibrium and clear water 

conditions for testing of the proposed models. 
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Figure 7. Scatter plot of observed and predicted scour depth at equilibrium and clear water 

conditions for the traditional equations. 

 

 

 


