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a b s t r a c t

Genetic programming (GP) has nowadays attracted the attention of researchers in the prediction of

hydraulic data. This study presents Linear Genetic Programming (LGP), which is an extension to GP, as

an alternative tool in the prediction of scour depth below a pipeline. The data sets of laboratory

proposed LGP models were compared with adaptive neuro-fuzzy inference system (ANFIS) model

results. The predictions of LGP were observed to be in good agreement with measured data, and quite

better than ANFIS and regression-based equation of scour depth at submerged pipeline.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Scour due to current and wave action is a major cause for the
failure of underwater pipelines. Interactions between the pipeline
and its erodible bed under strong current and/or wave conditions
may cause scour around the pipelines, leading to partial or even
complete burial of pipeline. This process involves the complex-
ities of both the three-dimensional flow pattern and sediment
movement. Scour underneath the pipeline may expose a section
of the pipe, causing it to become unsupported. If the free span of
the pipe is long enough, the pipe may experience resonant flow-
induced oscillations, leading to settlement and potentially struc-
tural failure. Accurate estimate of the scour depth is important in
the design of submarine pipelines (Chiew, 1991). The estimation
of the scour characteristics of underwater pipelines continues to
be a concern for hydraulic engineers.

A number of empirical formulas have been developed in the
past to estimate equilibrium scour depth below pipelines, includ-
ing Chao and Hennessy (1972), Kjeldsen et al., (1973), Ibrahim
and Nalluri (1986), Bijker and Leeuwestein (1984), Moncada-M
and Aguirre-Pe (1999), and Chiew (1991). However, the main
deficiency of these formulas is that the empirical equations do not
model actual scour process. A summary of these traditional
equations is given in following section.

Predictive approaches such as artificial neural networks (ANN)
(Kisi et al., 2009) and adaptive neuro-fuzzy inference systems (ANFIS;
ll rights reserved.

þ60 45941036.

@gantep.edu.tr (A. Guven),
Azamathulla et al., 2008) have been recently shown to yield effective
estimates of scour around hydraulic structures. ANNs have been
reported to provide reasonably good solutions for hydraulic-engineer-
ing problems, particularly for cases of highly nonlinear and complex
relationship among the input–output pairs in corresponding data
(Azmathullah et al., 2006; Kisi et al., 2009; Bilhan et al., 2010).

During last two decades, researchers have noticed that the use of
soft computing techniques as alternative to conventional statistical
methods based on controlled laboratory or field data, yields sig-
nificantly better results. ANN and GP are the most widely used
branches of soft computing in hydraulic engineering. Within the
larger field of hydraulics, several researchers have dealt with the
scour around and downstream of hydraulic structures using ANN
(Azmathullah et al., 2005, 2006, 2010; Guven and Gunal, 2008a) and
GP (Guven and Gunal, 2008b; Guven et al., 2009; Azamathulla and
Ab. Ghani, 2010). Linear genetic programming (LGP), which is an
extension to GP, recently has attracted the attention of researchers
in prediction of hydraulic characteristics (Guven, 2009; Guven and
Aytek, 2009).

This study presents LGP and ANFIS as alternative tools in the
prediction of scour below pipeline. The objective of this study is
to develop a predictive model for scour depth using LGP. The
performance of the proposed LGP model is compared with an
ANFIS and conventional regression-based equations. The explicit
formulation of the LGP model is also presented.
2. Analysis of local scour below underwater pipelines

The variables influencing the equilibrium scour depth (ds)
below a pipeline in a steady flow over a bed of uniform, spherical,
and cohesionless sediment as shown in Fig.1 are flow condition,

www.elsevier.com/locate/oceaneng
dx.doi.org/10.1016/j.oceaneng.2011.03.005
mailto:redacazamath@eng.usm.my
mailto:mdazmath@gmail.com
mailto:aguven@gantep.edu.tr
mailto:ykdemir@gantep.edu.tr
dx.doi.org/10.1016/j.oceaneng.2011.03.005


Notation

r fluid density,
r0s buoyant sediment density,
n fluid kinematic viscosity,
Q discharge,
Y flow depth,
g gravitational acceleration,
d50 particle mean diameter,
Sf slope of the energy line,
D the diameter of the pipe,

ds equilibrium scour depth,
Fr Froude number,
Re Reynolds number,
V average flow velocity,
a spread,
tn dimensionless Shields parameter,
R2 coefficient of determination,
RMSE root mean squared error,
MAE mean average error,
d average absolute deviation.
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sediment characteristics, and pipe geometry. The scour depth can
be represented by the following general functional relationship
(Moncada-M and Aguirre-Pe, 1999):

ds ¼ f ðr, r’
s, n, Q , Y , g, d50, Sf , DÞ ð1Þ

where r¼fluid density; r0s¼buoyant sediment density; n¼fluid
kinematic viscosity; Q¼discharge; Y¼flow depth; g¼gravitational
acceleration; d50¼particle mean diameter; Sf¼slope of the energy
line; D¼the diameter of the pipe; and ds¼equilibrium scour depth.

The nine independent variables in Eq. (1) can be reduced to a
set of six non-dimensional parameters. The Buckingham pi (or p)
theorem applied to Eq. (1), choosing r, Q, and D as basic variables,
leads to

ds

D
¼ f t�,

Y

D
,

D

d50
,FR,Re

� �
ð2Þ

where tn¼dimensionless shields parameter related to sediment
transport; D/d50¼dimensionless soil characteristics; FR ¼ V=

ffiffiffiffiffiffi
gY

p
,

Froude number; and Re¼VD/n, Reynolds number, where
V¼average flow velocity. The experimental data were collected
from several references such as Moncada-M and Aguirre-Pe
(1999) and Dey and Singh (2008). The whole data set consists of
215 data sets. Table 1 shows the range of variation of collected
data for this study and its parameters. A summary of the
Fig. 1. Local scour below pipel
traditional equations is given herein

ds ¼ 0:9722
U2

0

2g

� �0:2

D0:8 ðKjeldsen et al:; 1973Þ ð3Þ

ds

D
¼ 4:706 U0

Uc

� �0:89
Uo

gy

� �1:48
þ 0:06 clearwater

ds

D
¼ 0:084 U0

Uc

� ��0:8
Uoffiffiffiffi

gy
p

� ��0:16
þ 1:33 livebed

ðIbrahim and Nalluri; 1986Þ

ð4Þ

ds ¼ 0:929
Uo

2g

� �0:26

D0:79d�0:04
50 ðBijker and Leeuwestein; 1999Þ

ð5Þ

ds

D
¼ 0:9tanhð1þ 1:4FÞ þ 0:55;

ds

D
¼ 2Fsec 1:7

e

D

� �
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where D is the pipe diameter (m) and e is the initial gap between
pipe and undisturbed erodible bed (m).

2.1. Linear genetic programming (LGP)

LGP, which is an extension to conventional tree-based GP, evolves
developing sequences of instructions from an imperative program-
ming language (C or Cþþ) or from a machine language clarify. The
ine (Dey and Singh, 2008).



Table 1
Data variation.

Parameters Unit Data range Mean Std dev

(a)Range of different input–output parameters used for the estimation of scour depth

Flow discharge (Q) cm3/s 7–94.42 35.11 21.74

Flow depth (Y) cm 3.8–28 13.43 6.21

Particle mean diameter (d50) cm 0.234–0.7 0.437 0.144

Diameter of the pipe (D) cm 0.48–7.6 1.92 1.61

Equilibrium scour depth (ds) cm 0.02–11.3 4.75 2.39

(b)Range of different non-dimensional input–output parameters used for the estimation of scour depth

Dimensionless shields parameter (tn) 0.038–0.70 0.23 0.17

Normalized flow depth (Y/D) 1.06–7 3.14 1.2

Pipeline diameter cross section of sediment size (D/d50) 3.28–145.8 38.17 31.41

Froude number (Fr) 0.2–0.83 0.46 0.15

Reynolds number Re is normally used 700–9450 3250 2174

Non-dimensional equilibrium scour depth (�) 0.008–1.66 1.04 0.32

Table 2
Parameters of the optimized GP model.

Parameter Description of parameter Setting of parameter

p1 Function set þ , � , n, /, O, power

p2 Population size 250

p3 Mutation frequency (%) 96

p4 Crossover frequency (%) 50

p5 Number of replication 10

p6 Block mutation rate (%) 30

p7 Instruction mutation rate (%) 30

p8 Instruction data mutation rate (%) 40

p9 Homologous crossover (%) 95

p10 Program size Initial 64, maximum 256
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name ‘‘linear’’ refers to the structure of the (imperative) program
representation, and does not reflect functional genetic programs that
are restricted to a linear list of nodes only. On the contrary, genetic
programs normally represent highly nonlinear solutions (Brameier,
2004). The main differences to conventional tree-based GP are the
graph-based data flow that results from a multiple usage of indexed
variable (register) contents and the existence of structurally ineffec-
tive code (introns; Brameier, 2004; Brameier and Banzhaf, 2001). This
concept was expanded to the Automatic Induction of Machine code
by Genetic Programming Technique (AIMGP), in which the solutions
are directly computed, as binary machine codes and executed with-
out using an interpreter; thus in this way the computer program can
evolve very quickly (Bhattacharya et al., 2001; Brameier and Banzhaf,
2001; Foster, 2001).

Each individual program in LGP is represented by a variable-
length sequence of simple C language instructions. These instruc-
tions operate on one or more registers (r[i]) or constants (c) from
predefined sets (Oltean and Gros-an, 2003; Brameier, 2004). An
example of LGP program is

Void LGP

double v½3�;

f

r½0�þ ¼ v½1�;

r½1�� ¼ r½0�;

r½0�=¼ v½1�;

r½2�þ ¼ v½3�;

r½0�� ¼�0:992;

r½0�=¼ r½2�;

g

where v[i] represents the input and output variables used in LGP
modeling.

The function set of the system can be composed of arithmetic
operations (þ ,� , /, n), conditional branches (if v[i]o¼v[k]), and
function calls f Afex, x, sin, cos, tan, log, sqrt, ln, powerg. Each
function implicitly includes an assignment to a variable v[i],
which facilitates the use of multiple program outputs in LGP,
whereas in tree-based GP those side effects need to be incorpo-
rated explicitly (Brameier and Banzhaf, 2001). The functional set
and operational parameters used in LGP modeling during this
study are given in Table 2.

LGP utilizes two-point string crossover such as in medical data
mining (Brameier and Banzhaf, 2001). A segment of random
position and random length is selected in both parents and
exchanged between them. If one of the resulting children would
exceed the maximum length, crossover is abandoned and restarted
by exchanging equalized segments (Brameier and Banzhaf, 2001).
An operand or an operator of an instruction is changed by
mutation into another symbol over the same set. LGP also
employs a special kind of mutation (called macro mutation),
which deletes or inserts an entire instruction.

The fitness of a LGP individual may be computed using the
equation

f ¼
XN

j ¼ 1

ð9Oj�Ej9Þ ð7Þ

where Oj is the value returned by a chromosome for the fitness
case j and Ej is the expected value for the fitness case j.

In LGP, the maximum size of the program is usually restricted to
avoid over-growing programs without bound (Brameier and Banzhaf,
2001). In this study, the maximum size of each program has been set
to 256, starting with 80 instructions per program. This configuration
has been tested for each LGP model and has been experienced to be
sufficient to handle the nonlinearity and complexity of processes
involved. Finally, the best LGP program was converted into a
functional representation by successive replacements of v[i] starting
with the last effective instruction (see Eq. (16)).
2.2. ANFIS networks

The Adaptive Neuro-Fuzzy Inference System (ANFIS), first intro-
duced by Jang, 1993, is a universal approximator and, as such, is
capable of approximating any real continuous function on a compact
set to any degree of accuracy (Jang, 1993). Thus, in parameter
estimation, where the given data are such that the system associates
measurable system variables with an internal system parameter, a
functional mapping may be constructed by ANFIS, which approx-
imates the process of estimation of the internal system parameter.



Fig. 2. ANFIS Network Architecture.

Table 3
Sensitivity analysis for independent parameters for the testing set using LGP.

LGP Model-2 RMSE MAE R2

ds
D ¼C t� , Y

D , D
d50

,Re ,Fr

� �
0.054 0.34 0.88

ds
D ¼C Y

D , D
d50

,Re ,Fr

� �
0.066 0.46 0.82

ds
D ¼C t� , D

d50
,Re ,Fr

� �
0.077 0.56 0.81

ds

D ¼C t� , Y
D ,Re ,Fr

� �
0.096 0.75 0.73

ds
D ¼C t� , Y

D , D
d50

,Fr

� �
0.143 0.85 0.83

ds

D ¼C t� , Y
D , D

d50
,Re

� �
0.267 0.95 0.64
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The ANFIS is functionally equivalent to fuzzy inference sys-
tems (Jang and Sun, 1995). Below, the hybrid learning algorithm
(Jang, 1993), which combines gradient descent and the least-
squares method, is introduced, and the issue of how the equiva-
lent fuzzy inference system can be rapidly calibrated and adapted
with this algorithm is discussed.

Most of the previous works that address ANN applications to
water resources have included the feed forward type of the
architecture, where there are no backward connections, which
are trained using the error back propagation scheme or the FFBP
configuration (Azamathulla and Ab. Ghani, 2010). Drawbacks of
ANN include that it needs more training time and the difficulties
in detecting hidden neurons in hidden layer for better predictions.
Therefore, the present study applies a new soft computing
technique ANFIS.

The input in ANFIS (Fig. 2) is first converted into fuzzy
membership functions, which are combined together. After fol-
lowing an averaging process to obtain the output membership
functions, the desired output is finally achieved.
3. Development of LGP and ANFIS models

The following scenarios are considered in building the LGP and
ANFIS models with the inputs and output shown in the network.
The equilibrium local scour depth (ds) around a pipeline is
influenced by the variables characterizing the flow, bed sediment,
and pier geometry, as given in Eq. (1) and relative depth scour in
Eq. (2). A sensitivity analysis was done in order to investigate the
significance of each in input parameter given right side of Eq. (2) on
ds/D. Initially, a LGP model was developed based on the full-input
set given in Eq. (2). Then each parameter was removed from the
input set and new LGP models were developed. It was observed
that removing any of the input parameters considerably worsened
the performance of corresponding LGP model and LGP developed
based on the whole input set gave the best performance (see
Table 3). This proved the significant influence of each parameter
given in right side of Eq. (2) on relative scour depth ds/D.

The performance of all models was compared using four error
measures

R2 ¼ 1�

PN
i ¼ 1 ðoi�tiÞ

2PN
i ¼ 1 ðoi�oiÞ

2
ð8Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 1 ðoi�tiÞ

2

N

s
ð9Þ

MAE¼
1

N

XN

i ¼ 1
9oi�ti9 ð10Þ

d¼
P

9ðoi�tiÞ9P
oi

�100 ð11Þ

where ti denotes the target values of relative scour depth (cm/cm),
while oi and oi denote the observed and averaged observed values
of relative scour depth (cm/cm), respectively, and N is the number
of data points.

3.1. Development of ANFIS model

This network (Fig. 2) works as follows: let x and y be the two
typical input values fed at the two input nodes, which will then
transform those values to the membership functions (say bell-
shaped) and give the output as follows: (Note in general, w is the
output from a node, m is the membership function, and Mi and Ni are
fuzzy sets associated with nodes x and y, respectively, in Eq. (12))

mMiðxÞ ¼
1

1þ9ðx�c1Þ=a19
2b1

ð12Þ

where a1, b1, and c1 are changeable premise parameters. Similar
computations are carried out for the input of y to obtain mNi(y). The
membership functions are then multiplied in the second layer, e.g.

wi ¼ mMiðxÞ:mNiðyÞ ði¼ 1, 2Þ ð13Þ

Such products or firing strengths are then averaged

wi ¼wi=
X

wi ði¼ 1, 2Þ ð14Þ

Nodes of the fourth layer use the above ratio as a weighting
factor. Furthermore, using fuzzy if–then rules produces the
following output: (an example of an if–then rule: if x is M1 and
y is N1, then f1¼p1xþq1yþr1)

wifi ¼wiðpixþqiyþriÞ ð15Þ

where p, q, and r are changeable consequent parameters. The final
network output f was produced by the node of the fifth layer as a
summation of all incoming signals, which is exemplified in the
Eq. (15). The parameters like p, q, and r employed in Eq. (15), for
each rule of the ANFIS models, and the corresponding rules of the
developed ANFIS models (software) could be made available by
an E-mail request to the first writer.

A two-step process is used for faster calibrating and to adjust
the network parameters to the above network. In the first step,
the premise parameters are kept fixed, and the information is
propagated forward in the network to layer 4. In layer 4, a least-
squares estimator identifies the important parameters. In the
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second step, the backward pass, the chosen parameters are held
fixed while the error is propagated. The premise parameters are
then modified using gradient descent. Apart from the calibration
patterns, the only user-specified information required is the
number of membership functions for each input. The description
of the learning algorithm is given by Jang and Sun (1995).

The following scenario was considered in building the ANFIS
model (Fig. 3) with the inputs and output shown in the network.
From the collected data sets used in this study, around 75% of
these patterns were used for training (chosen randomly until the
best calibration performance was obtained), while the remaining
patterns (25%) were used for testing, or validating, the ANFIS
model. Software was developed to perform the analysis, and can
be obtained from the corresponding author.
3.2. Development of LGP model

In this study, four basic arithmetic operators (þ � n /) and
some basic mathematical functions (O, x2, power) were utilized to
get the optimum LGP formulation. The combination of arithmetic
operators and functions utilized in this study were observed to
give the best results. A large number of generations are tested to
find a formula with minimum error. First, the maximum size of
each program was assigned as 256, starting with 80 instructions
for program. The program is run until there is no longer sig-
nificant improvement in the testing/validating performance. The
simplified analytic form of proposed LGP model is given in
Eq. (16), for interested readers who can re-evaluate LGP in their
experimental results

ds=D¼ ðð1�T1Þ
8
�1Þ0:5�

T1

ð1�T1Þ
4

ð16Þ
System sug51: 5inputs, 1 output, 18 rules

Re

Y/D

D/d50

Fr

f(u)

ds/D

Sug51

(sugeno)

18 rules

Fig. 3. ANFIS Model-2 for pipeline scour depth.

Table 4
Comparison of models for non-dimensional set performance of the LGP and ANFIS mo

Models for non-dimensional R2 RMSE

Training Validation Training

LGP 0.86 0.88 0.039

ANFIS 0.89 0.82 0.008
where

T1 ¼
ðT2�T3�T4�T5Þ

T6
þT7

� �
T9

ðT0:25
9 þ1:253Þ2

ð17Þ

T2 ¼D=d50�4:92t�1
� �3:764�

1

FRð�1:23t�1
� �1Þ

ð18Þ

T3 ¼
ð�4:92t�1

� �4�T1ÞFr

1:048y=DT2
ð19Þ

T4 ¼ 3:012t2
�ðT2�T3Þþ1:23t�1

� ð20Þ

T5 ¼ 0:667ðT4�0:973t�1
� Þ�ðT2�T3�T4Þ ð21Þ

T6 ¼
T5

y=D
þðT2�T3�T4�T5Þþy=DþD=d50þ0:288

� �2

ð22Þ

T7 ¼
T6

D=d50R2
e

þ1:745R�1
e ð23Þ

T8 ¼
0:066ðT7þ1:23t�1

� �0:176Þ2�0:065

t�y=DððT2�T3�T4�T5Þ=T6þT7vÞ2
ð24Þ

T9 ¼ ð3:116y=DððT8þReÞt��ReÞ
2
Þ
0:25

ð25Þ

T1– T9 are the temporary computational programs used in the
proposed LGP modeling. The value of the output of these programs
is the value remaining in Eq. (16) after the program executes.
4. Results and discussions

The statistical results of model predictions for training and
testing sets are given in Table 4. From Table 4, it is clear that LGP
model predicted the scour depth for both training and testing set
with relatively lower error RMSE (0.039 and 0.045) and higher
accuracy (R2

¼0.88 and 0.83), respectively. Further, Table 4 also
proves the outperforming of the LGP models compared to the
ANFIS models and Eq. (2).

For instance, it can be seen from Table 4 that the ANFIS model
has smaller RMSE (0.008) and higher R2 (0.89), compared to the
ANFIS (Fig. 4). The underlying fact beneath these results probably is
due to a lesser scaling effect. Parallel findings were also addressed
by Guven and Gunal (2008a, 2008b) and Azamathulla et al. (2008).

Another interesting observation from Table 4 is that, although
the d results of ANFIS (10.58) and LGP (15.5) for training set are
lower than those of LGP model, the MAE values of ANFIS results
for testing set are less reliable. Meantime, the testing results of
ANFIS models are much worse than those for training and testing
(Figs. 4 and 5). This indicates that the ANFIS models has got
specialized on the training data and has a poor generalization
capacity on the testing data. This issue is known as an over-
generalization problem, which is a common issue in neural
network techniques (Guven and Gunal, 2008b).

The empirical formula proposed by Kjeldsen et al. (1973) (Eq.
(3)) can be said to fail in prediction of both ds with quite high
error (RMSE¼3.043, MAE¼3.451) and relatively low correlation
dels.

MAE d

Validation Training Validation Training Validation

0.045 0.279 0.480 15.5 14.87

0.035 0.058 0.062 10.58 11.47



Fig. 5. Scatter plot of observed and predicted relative scour depth using the LGP

and ANFIS models for non-dimensional parameter-validation (testing).

Fig. 4. Scatter plot of observed and predicted relative scour depth using the LGP

and ANFIS models for non-dimensional parameter-training.
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(R2
¼0.642), compared to the LGP and ANFIS models. The sig-

nificant drawback of conventional regression-based equations is
the fact that they are restrained by the mathematical shape of the
model function, which generally fails to conform to the physical
nature of observed data (Guven and Gunal, 2008a, 2008b).
5. Conclusion

The application of the relatively new soft computing approach of
genetic programming to predict the local pipeline scour depth was
described. The LGP (Eq. 16) and ANFIS models were developed to
predict the values of relative scour depth from the laboratory
measurements. The equilibrium depth of scour below underwater
pipelines was estimated based on optimum data sets including most
effective non-dimensional parameters. Application of the LGP in this
study is another important contribution to scour-depth estimation
methodologies for pipes. The present study indicates that employing
the original data set yielded a network that can predict measured
depth scour below pipeline more accurately than the standard
regression analysis. The overall performance of ANFIS model
(R2
¼0.89) and the LGP model (R2

¼0.86) were found to be
challenging.
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