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Genetic Programming to Predict River Pipeline Scour
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Abstract: The process involved in the local scour below pipelines is so complex that makes it difficult to establish a general empirical
model to provide an accurate estimation for scour. This technical note describes the use of genetic programming (GP) to estimate the
pipeline scour depth. The data sets of laboratory measurements were collected from published literature and used to train the network or
evolve the program. The developed network and evolved programs were validated by using the observations that were not involved in the
training. The performance of GP was found to be more effective when compared with the results of regression equations and artificial
neural networks modeling in predicting the scour depth around pipelines.
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Introduction

Scour is a major cause for the failure of underwater pipelines.
Interactions between the pipeline and its erodible bed under
strong current and/or wave conditions may cause scour around the
pipelines. This process involves the complexities of both the
three-dimensional flow pattern and sediment movement. The
scour underneath the pipeline may expose a section of the pipe
causing it to become unsupported. If the free span of the pipe is
long enough, the pipe may experience resonant flow-induced os-
cillations leading to settlement and potentially structural failure.
An accurate estimate of the scour depth is important in the design
of submarine pipelines (Chiew 1991). The estimation of the scour
characteristics of underwater pipelines continues to be a concern
for hydraulic engineers.

A number of empirical formulas have been developed in the
past to estimate the equilibrium scour depth below pipelines in-
cluding Chao and Hennessy (1972), Kjeldsen et al. (1973), Ibra-
him and Nalluri (1986), Dutch research group (Bijker and
Leeuwestein 1984), Moncada and Aguirre-Pe (1999), and Chiew
(1991). However, the main deficiency of these formulas is that the
empirical equations do not model actual scour process. Semi-
empirical methods combine laboratory and field observations with
some physics. Most commonly regression relations are used to
predict the pipeline scour; however, the regression analysis can
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have large uncertainties, which own major drawbacks pertaining
idealization of the complex scour process, approximation, and
averaging widely varying prototype conditions. Thus, the com-
puted scour depths can be far from the actual ones. Another im-
portant issue, apart from the complexity of the scour phenomenon
involved, is due to the limitation of the regression analysis. In the
regression analysis, whatever the nature of the corresponding
problem is, it is tired to model by a predefined equation, either
linear or nonlinear. Another major constraint in the application of
regression analysis is the assumption of the normality of residu-
als. A summary of these equations is shown in Table 1.

Predictive approaches such as artificial neural networks
(ANNSs) (Azmathullah et al. 2005) and adaptive neurofuzzy infer-
ence systems (ANFIS) (Azamathulla et al. 2008) have been re-
cently shown to yield effective estimates of the scour around
hydraulic structures. ANNs have been reported to provide reason-
ably good solutions for hydraulic-engineering problems particu-
larly for cases of highly nonlinear and complex relationships
among the input-output pairs in the corresponding data
(Azamathulla et al. 2010).

The objective of this study is to develop a predictive model for
the scour depth using genetic programming (GP). The perfor-
mance of the proposed GP model is compared with a standard
radial basis function (RBF) neural network and conventional
regression-based equations. The explicit formulation of the GP
model is also presented.

Analysis of Local Scour below Underwater
Pipelines

The variables influencing the equilibrium scour depth (d,) below
a pipeline in a steady flow over a “bed of uniform, spherical, and
cohesionless sediment as shown in Fig. 1 are: flow condition,
sediment characteristics, and pipe geometry.” The scour depth can
be represented by the following general functional relationship
(Moncada and Aguirre-Pe 1999):
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Table 1. Empirical Formulas for Estimate Pipeline Scour Depth
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D=pipe diameter; e=initial gap between the pipe and undisturbed erodible bed

ds=f(P,P;,V,Q,Y,g,dso,sf,D) (1)

where p=fluid density; p,=buoyant sediment density ; v=fluid
kinematic viscosity; Q=discharge; Y=flow depth; g=gravi-
tational acceleration constant; ds,=particle mean diameter; S,
=slope of the energy line; D=the diameter of the pipe; and d;
=equilibrium scour depth.

The nine independent variables in Eq. (1) can be reduced to a
set of six nondimensional parameters. The Buckingham pi (or )
theorem applied to Eq. (1), choosing p, O, and D as basic vari-
ables, leads to
i=\I’('r*,X,B,R,Sf,F) 2)
D D ds,
where T.=dimensionless Shields parameter related to sediment
transport; D/dsy,=dimensionless soil characteristics; R=VD/v

Water surface

ﬁ
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Fig. 1. Local scour below pipeline in river crossing (Dey and Singh
2008)

=Reynolds number; Sy=slope of the energy line; and F=V/ \e“’gY
=Froude number. The influence of the Reynolds number is con-
sidered negligible under a fully turbulent flow over a rough bed
(Lim and Chiew 2001; Melville 1992). The experimental data
were collected from several references such as Moncada and
Aguirre-Pe (1999) and Dey and Singh (2008). The whole data set
consists of 215 data sets.

During the past two decades, researchers have noticed that the
use of soft computing techniques as an alternative to conventional
statistical methods based on controlled laboratory or field data
yielded significantly better results. The ANN and GP are the most
widely used branches of soft computing in hydraulic engineering.
Within the larger field of hydraulics, several researchers have
dealt with the scour around and downstream of hydraulic struc-
tures using ANNs (Azmathullah et al. 2005; Azamathulla et al.
2010, 2008). Gene-expression programming (GEP), which is an
extension of GP, recently has attracted the attention of researchers
in the prediction of hydraulic characteristics. This study presents
the ANN and GP as an alternative tool in the prediction of scour
below the pipeline.

Development of Neural Network Model

ANNSs provide a random mapping between an input and an output
vector, typically consisting of three layers of neurons, namely,
input, hidden, and output, with each neuron acting as an indepen-
dent computational element. Neural networks derive their
strengths from the high degree of freedom associated with their
architecture. Prior to application, the network is trained to observe
data sets. This feeds the network with input and output pairs and
determines the values of connection weights, bias, or centers (Fig.
2 as example). The training may require many epochs (presenta-
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Fig. 2. RBF neural network architecture

tion of complete data sets once to the network), being carried out
until the training sum of squares error reaches a specified error
goal. The concepts involved behind these training schemes are
outlined in the American Society of Civil Engineers (ASCE) Task
Committee (2000). A neural network toolbox contained within the
MATLAB package was used in this study. The usual feedforward
type of network was trained using the RBF. Out of the total of 215
input-output pairs, about 75% (161 sets), selected randomly, were
used for training, whereas the remaining 25% (54 sets) were em-
ployed for testing. As dictated by the use of a Gaussian function,
all patterns were normalized within the range of (0.0, 1.0) before
their use. The RBF network (five inputs, 36 hidden neurons, and
one output) was trained by using various values of spread («)
between 0 and 1. A spread constant a for the radial basis layer,
and returns a network with weights and biases such that the out-
puts are exactly for given targets. The value of 0.01 was selected
as it yielded the best performance for the training data.

Development of GP Model

GP, a branch of the genetic algorithm (GA) (Holland 1975), is a
method for learning the most “fit” computer programs by means
of artificial evolution (Johari et al. 2006). GP initializes a popu-
lation consisting of the random members known as chromosomes
(individual), and the fitness of each chromosome is evaluated
with respect to a target value. The principle of Darwinian natural
selection is used to select and reproduce “fitter” programs. GP
creates equal or unequal length computer programs that consist of
variables (terminal) and several mathematical operators (function)
sets as the solution. The function set of the system can be com-
posed of arithmetic operations (+,—,/, X) and function calls such
as (e*,x,sin,cos,tan,log,sqrt,In,power). Each function implic-
itly includes an assignment to a variable, which facilitates the use
of multiple program outputs in GP, whereas in tree-based GP
those side effects need to be incorporated explicitly (Brameier
and Banzhaf 2001).

The GP used in this study utilizes a two-point string crossover.
A segment of random position and random length is selected in
both parents and exchanged between them. If one of the resulting
children would exceed the maximum length, the crossover is
abandoned and restarted by exchanging equalized segments
(Brameier and Banzhaf 2001). An operand or an operator of an
instruction is changed by mutation into another symbol over the
same set.

The fitness of a GP individual may be computed by using the
equation

N
=2 (x;-1)) (3)
j=1

where X;=value returned by a chromosome for the fitness case j;
and Y;=expected value for the fitness case j.

In GP, the maximum size of the program is usually restricted
to avoid overgrowing programs without bounds (Brameier and
Banzhaf 2001). This configuration was tested for the proposed GP
model and was found sufficient. The best individual (program) of
a trained GP can be converted into a functional representation by
successive replacements of variables starting with the last effec-
tive instruction (Oltean and Grosan 2003).

To date, the application of GP in hydraulic engineering has
been limited. Davidson et al. (1999) and Babovic and Keijzer
(2000) determined empirical relationships for the friction in tur-
bulent pipe flow and the additional resistance to flow induced by
flexible vegetation, respectively. Keijzer and Babovic (2002) de-
rived empirical equations using real-world hydraulic data. Gius-
tolisi (2004) determined Chezy resistance coefficients in
corrugated-metal pipes. Kizhisseri et al. (2005) explored a better
correlation between the temporal pattern of flow field and sedi-
ment transport by using numerical model results and field data;
and Azamathulla et al. (2010) predicted local scour at bridge
piers.

The GP model was developed using the same input variables
as with an ANN-RBF model. Five of 10 parameters in Eq. (1),
namely, the fluid density, the buoyant sediment density, fluid dy-
namic viscosity, gravitational acceleration, and the slope of the
energy line are constant in all experiments. Therefore, the first
combination involves just four of the 10 parameters in Eq. (1) as
the input pattern and the equilibrium scour depth (d,) as the out-
put pattern. The second combination includes the six nondimen-
sional parameters of Eq. (2) and the normalized equilibrium scour
depth (d,/D) as the input and output patterns, respectively. Both
of these combinations of inputs have been used for the GP and
ANN models.

In this study, four basic arithmetic operators (+,—, X ,/) and
some basic mathematical functions (|, x?, power) were used. A
large number of generations (5,000) were tested. First, the maxi-
mum size of each program was specified as 256, starting with 64
instructions for the initial program.

The simplified analytic form of the proposed GP model may

be expressed as
1= T2 2 Y/D 0.5 2 2
dJD=(%dDT0{<{[—136L———1L——L—+Tﬂ +F

(dsy/D)
2 0.5
-1 ) -70-1 (4)
where
(F-0.314) 2
———F—+F-R-0.739
Y/D
T=2 +(F-0.224)
dso/D

Training and Testing Results of GP Modeling

The performance of GP in training and testing sets is validated in
terms of the common statistical measures R> (coefficient of deter-
mination), root mean square error (RMSE), mean average error
(MAE), and & (average absolute deviation).

Table 2 shows the range of variation of collected data for this
study and its parameters. The functional set and operational
parameters used in GP modeling during this study are listed in
Table 4.
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Table 2. Data Variation

Parameters

Unit Data range

Mean

Standard deviation

(a) Range of different input-output parameters used for the estimation of scour depth

Flow discharge (Q) cm’/s 7-94.42 35.11 21.74
Flow depth (Y) cm 3.8-28 13.43 6.21
Particle mean diameter (ds) cm 0.234-0.7 0.437 0.144
Diameter of the pipe (D) cm 0.48-7.6 1.92 1.61
Equilibrium scour depth (d;) cm 0.02-11.3 4.75 2.39
(b) Range of different nondimensional input-output parameters used for the estimation of scour depth
Dimensionless Shields parameter (T,) 0.038-0.70 0.23 0.17
Normalized flow depth (Y/D) 1.06-7 3.14 1.2
Pipeline diameter cross section of sediment size (D/ds) 3.28-145.8 38.17 31.41
Froude number (F) 0.2-0.83 0.46 0.15
Reynolds number R is normally used 700-9,450 3,250 2,174
Nondimensional equilibrium scour depth (—) 0.008-1.66 1.04 0.32
The performance of all models was compared using four error
measures
N RMSE = (6)
E (0;=1)?
i=1
R=1-— ) X %
—\2 MAE=—2lo;—-t 7
E (Oi_oi) N& | i l‘ (7)
i=1
> |(0; = 1,)|
= (8)

Table 3. Parameters of the Optimized GP Model

Parameter Description of parameter Setting of parameter
D1 Function set +,—, X,/,, power
)2 Population size 250

D3 Mutation frequency (%) 96

D4 Crossover frequency (%) 50

Ds Number of replication 10

Do Block mutation rate (%) 30

P7 Instruction mutation rate (%) 30

Ds Instruction data mutation rate (%) 40

Do Homologous crossover (%) 95

Pio Program size Initial 64; maximum 256

Table 4. Sensitivity Analysis for Independent Parameters for the Testing

Set

Model RMSE MAE R?
d Y D 0.046 0.32 0.85
==y TR, F

D D ds,

d Y D 0.065 0.45 0.82
—=V|—-—R,F

D D ds

d D 0.075 0.53 0.89
—S:\I’<T*,—,Rl,,F>

D dso

d Y 0.098 0.76 0.71
==V T*,_,RP,F

D D

d. Y D 0.134 0.87 0.85
_A:\P T*s_s_sF

D D dy

d Y D 0.256 0.987 0.656
2o~ —R,

D D ds,

—— X 100
201'

where #; denotes the target values of the equilibrium scour depth
(cm); while o; and 0; denote the observed and averaged observed
values of the equilibrium scour depth (cm), respectively; and N
=number of data points. First, an attempt was made to assess the
significance or influence of each input parameter on estimated
ds/D values. Table 3 compares the GP models, with one of the
independent parameters removed in each case and deleting any
independent parameter from the input set yielded larger RMSE
and lower R? values. These five independent parameters have
influence on ds/D and so the functional relationship given in Eq.
(2) is used for the GP modeling in this study. The GP approach
resulted in a highly nonlinear relationship between ds/D and the
input parameters with high accuracy and relatively low error. The
testing performance of the proposed GP model revealed a high
generalization capacity with R?=0.89, RMSE=0.046, MAE
=0.32%, and 3=9.9.

Results and Discussion

In this study, different combinations of input data (nondimen-
sional data set) were explored to assess their influence on the
scour depth modeling (Table 3). The GP model was developed
and tested for predicting the pipeline scour depth. The dimen-
sional parameter combinations included the flow discharge; flow
depth; particle mean diameter; diameter of the pipe; and the equi-
librium scour depth. A dimensional analysis was used to deter-
mine the parameter for underwater pipeline scour. The
nondimensional parameters combination include the dimension-
less Shields parameter related to sediment transport; pipeline di-
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Fig. 4. Observed versus predicted scour depth (training and testing)

ameter cross section of grain size (dsg); and the Froude number.
Each parameter (except energy slope) in Egs. (1) and (2) was
considered in turn in the GP for the sensitivity analysis. The re-
sults show that, of the parameters in Eq. (1), the mean particle
size (dsy) has the most significant effect on the scour depth and
the flow discharge has the least effect on it.

Similarly, for the nondimensional parameter in Eq. (2) sensi-
tivity analysis shows that the dimensionless Shields parameter
(7.) and Y/D have, respectively, the most and the least effect on
the normalized scour depth. To assess the performance of the GP
model, the observed equilibrium scour depth values were plotted
against the predicted ones. Figs. 3 and 4 illustrate the results with

the performance indices between the predicted and observed data
for the training and validating (testing) data sets for the dimen-
sional parameters. Fig. 4 shows the same nondimensional respec-
tively for both models. As can be seen from Table 5, the first
combination (original data) has a better ability to predict the scour
depth (R?=0.741). The result of the second combination data
shows a high coefficient of determination [R>=0.89, also RMSE
(=0.046)] in the second combination is better than the first com-
bination (RMSE=0.0957) in both the training and validation pe-
riods but this variation is low compare with the R? variation.

Table 5. Comparison of Models for Dimensional and Nondimensional Sets Performance of the GP and ANN-RBF

R? RMSE MAE 3

Training Validation Training Validation Training Validation Training Validation
Models for dimensional
GP 0.866 0.741 0.0895 0.0957 1.279 1.426 5.78 10.45
ANN-RBF 0.827 0.683 0.0978 0.0998 1.933 2.71 11.49 15.67
Models for nondimensional
GP 0.96 0.89 0.029 0.046 0.279 0.320 3.7 9.9
ANN-RBF 0.87 0.73 0.008 0.073 0.083 0.071 11.45 15.67
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Conclusion

The application of the relatively new soft computing approach of
GP to predict the local pipeline scour depth was described. A GP
and an ANN-RBF model were developed to predict the values of
the relative scour depth from the laboratory measurements. A new
approach was presented to estimate the equilibrium depth scour
below underwater pipelines in a river crossing from optimum data
sets with the GP and ANN modeling techniques. The application
of the GP in this study is another important contribution to scour-
depth estimation methodologies for pipes. The present study in-
dicates that employing the original data set yielded a network that
can predict measured pipeline depth scour in rivers more accu-
rately than standard regression analysis. The overall performance
of the GP model is superior to the ANN model.
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Notation

The following symbols are used in this technical note:
D = diameter of pipe;
d, = equilibrium scour depth;
ds, = particle mean diameter;
F = Froude number;
g = gravitational acceleration;
MAE = mean average error;
Q = discharge;
4y, = discharge per unit width through hole;
R = Reynolds number;
R? = coefficient of determination;
RMSE = root-mean-square error;
S; = slope of energy line;
V = flow velocity;
flow depth;
spread;
average absolute deviation;
fluid kinematic viscosity;
fluid density;
buoyant sediment density; and
T, = dimensionless Shields parameter.

T < R N~
Il

References

American Society of Civil Engineers (ASCE) Task Committee. (2000).
“The ASCE Task Committee on application of artificial neural net-

works in hydrology.” J. Hydrol. Eng., 5(2), 115-137.

Azamathulla, H. Md., Deo, M. C., and Deolalikar, P. B. (2008). “Alter-
native neural networks to estimate the scour below spillways.” Adv.
Eng. Softw., 39(8), 689-698.

Azamathulla, H. Md., Ghani, A. A., Zakaria, N. A., and Aytac, G. (2010).
“Genetic programming to predict bridge pier scour.” J. Hydraul. Eng.,
136(3), 165-169.

Azmathullah, H. Md., Deo, M. C., and Deolalikar, P. B. (2005). “Neural
networks for estimation of scour downstream of ski-jump bucket.” J.
Hydraul. Eng., 131(10), 898-908.

Babovic, V., and Keijzer, M. (2000). “Genetic programming as a model
induction engine.” J. Hydroinform., 2(1), 35-60.

Bijker, E. W., and Leeuwestein, W. (1984). “Interaction between pipe-
lines and the seabed under influence of waves and currents.” Proc.,
Symp. on Int. Union of Theoretical Applied Mechanics/Int. Union of
Geology and Geophys., Graham and Trotman, Gettysburg, Md., 235—
242.

Brameier, M., and Banzhaf, W. (2001). “A comparison of linear genetic
programming and neural networks in medical data mining.” /EEE
Trans. Evol. Comput., 5, 17-26.

Chao, J. L., and Hennessy, P. V. (1972). “Local scour under ocean outfall
pipe-lines.” J. Water Pollut. Control Fed., 44(7), 1443-1447.

Chiew, Y. M. (1991). “Prediction of maximum scour depth at submarine
pipelines.” J. Hydraul. Eng., 117(4), 452-466.

Davidson, J. W., Savic, D. A., and Walters, G. A. (1999). “Method for
identification of explicit polynomial formulae for the friction in tur-
bulent pipe flow.” J. Hydroinform., 1(2), 115-126.

Dey, S., and Singh, N. P. (2008). “Clear-water scour below underwater
pipelines under steady flow.” J. Hydraul. Eng., 134(5), 588—600.
Giustolisi, O. (2004). “Using genetic programming to determine Chézy
resistance coefficient in corrugated channels.” J. Hydroinform., 6(3),

157-173.

Holland, J. H. (1975). Adaptation in natural and artificial system, Uni-
versity of Michigan Press, Ann Arbor, Mich.

Ibrahim, A., and Nalluri, C. (1986). “Scour prediction around marine
pipelines.” Proc., 5th Int. Symp. on Offshore Mechanics and Arctic
Engineering, American Society of Mechanical, 679—-684.

Johari, A., Habibagahi, G., and Ghahramani, A. (2006). “Prediction of
soil-water characteristic curve using genetic programming.” J. Geo-
tech. Geoenviron. Eng., 132(5), 661-665.

Keijzer, M., and Babovic, V. (2002). “Declarative and preferential bias in
GP-based scientific discovery.” Genet. Program. Evolvable Mach.,
3(1), 41-79.

Kizhisseri, A. S., Simmonds, D., Rafig, Y., and Borthwick, M. (2005).
“An evolutionary computation approach to sediment transport model-
ing.” 5th Int. Conf. on Coastal Dynamics, ASCE, Reston, Va.

Kjeldsen, S. P., Gjgrsvik, O., Bringaker, K. G., and Jacobsen, J. (1973).
“Local scour near offshore pipelines.” Proc., 2nd Int. Conf. on Port
and Ocean Engineering under Arctic Conditions, Univ. of Iceland,
Reykjavik, 308-331.

Lim, F. H., and Chiew, Y. M. (2001). “Parametric study of riprap failure
around bridge piers.” J. Hydraul. Res., 39(1), 61-72.

Melville, B. W. (1992). “Local scour at bridge abutments.” J. Hydraul.
Eng., 118(4), 615-631.

Moncada-M., A. T., and Aguirre-Pe, J. (1999). “Scour below pipeline in
river crossings.” J. Hydraul. Eng., 125(9), 953-958.

Oltean, M., and Grosan, C. (2003). “A comparison of several linear ge-
netic programming techniques.” Complex Syst., 14(1), 1-29.

132 / JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE © ASCE / AUGUST 2010



