
Evaluation of GMDH networks for prediction of local scour depth
at bridge abutments in coarse sediments with thinly armored beds

Mohammad Najafzadeh a,n, Gholam-Abbas Barani b, Masoud-Reza Hessami-Kermani b

a Department of Civil Engineering, Graduate University of Advanced Technology-Kerman, P.O. Box 76315-116, Kerman, Iran
b Department of Civil Engineering, Shahid Bahonar University of Kerman, P.O. BOX 76169133, Kerman, Iran

a r t i c l e i n f o

Article history:
Received 1 November 2014
Accepted 15 May 2015
Available online 11 June 2015

Keywords:
Armored beds
Bridge abutments
Coarse bed sediments
Evolutionary computing
Group method of data handling
Scour depth

a b s t r a c t

Protection of the bridge abutment in waterways against scour phenomena is a very significant issue in
hydraulic engineering fields. Several field and experimental investigations were carried out to produce a
relationship between the abutment scour depth due to thinly armored bed and the governing variables.
However, existing empirical equations do not always provide accurate scour prediction due to the complexity
of the scour process. In the present study, group method of data handling (GMDH) networks are utilized to
predict abutments scour depth in thinly armored beds. GMDH network is developed using evolutionary and
iterative algorithms included those of gravitational search algorithm (GSA), particle swarm optimization (PSO),
and back propagation (BP). The sediment size properties, bridge abutments geometry, and approaching flow
are considered as effective parameters on the abutment scour depth. Training and testing stages of the models
are carried out using experimental data sets. Performances results for alternative GMDH networks are
compared with those obtained using traditional equations. A sensitivity analysis is also performed to
determine the most important parameter in predicting the abutment scour depth in thinly armored beds.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Local scour around bridge abutments is known as scour process
because flow conditions changes by the abutments presence.
Recently, investigations of abutment scour indicated which the
scour at bridge abutments has very complex mechanism. The flow
structure that cause abutment local scour is complex in details.
This structure can be included down flow, primary vortex, sec-
ondary vortex, and wake vortices. The scour phenomena in non-
cohesive bed materials are classified into the clear-water and live-
bed conditions (Yakoub, 1995). In the last few decades, a large
number investigations of abutment scour were carried out in non-
cohesive soils (e.g., Dey et al., 2008; Dey and Barbhuiya, 2004;
Richardson et al., 1993; Melville, 1992; Froehlich, 1989; Laursen,
1980; Liu et al., 1961).

A few researchers applied armored layer to decrease the scour
depth around abutments. In fact, armored layer is defined as a
protective surface-layer whose particles size is bigger than bed
materials. The armored bed is composed of a coarse sediment that

overlain on a bed with relatively fine sediment. The armored bed
develops the value of critical shear velocity for the inception
motion of bed materials and it is caused to increase stability of
surface particles and structures. In addition, it was used to protect
piers and abutments against scour process where are embedded in
river or sea (Dey and Barbhuiya, 2004; Froehlich, 1995; Ettema,
1980; Melville, 1975). Dey and Barbhuiya (2004) carried out
abutment scour experiments with thinly armored bed. They
performed experiments with different geometry of bridge abut-
ments in clear-water conditions. Dey et al. (2008) concluded that
the dune height is the most important factor to cause the
maximum damage of riprap. Through the experiments, empirical
equations based on non-linear regressions were yielded from their
investigations. Empirical equations are restricted to the range of
experimental database. Therefore, it should be noted that empiri-
cal equations in term of traditional methods based regression have
not highly generalization capacity to apply for designing the scour
depth around abutments due to armored beds.

In this way, various artificial intelligence approaches such as
artificial neural network (ANN), adaptive neuro-fuzzy inference
system (ANFIS), genetic programming (GP), and linear genetic
programming (LGP) were used to predict scour depth around
hydraulic structures (Azamathulla et al., 2014; Zahiri et al., in
press; Dehghani et al. 2013; Azamathulla, 2012a, 2012b;
Azamathulla et al., 2011, 2010, 2008a, 2008b; Guven and Gunal
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2008; Azmathullah et al., 2005). Among these methods, the GMDH
network is known as a self-organized method to model and
forecast the behaviors of unknown or complicated systems based
on given input–output data pairs (Amanifard et al., 2008). In
addition, the GMDH approach is used in different fields of
engineering sciences such as energy conservation, control engi-
neering, system identification, marketing, economic, and geology
(Mehrara et al., 2009; Kalantary et al., 2009; Amanifard et al.,
2008; Srinivasan, 2008; Witczak et al., 2006). In fact, the main
advantage of the GMDH model is to build analytical functions
within feed forward network based on quadratic polynomial
whose weighting coefficients are obtained using regression
method (Kalantary et al., 2009). Recently, the GMDH networks
were used to predict the scour depth around hydraulic structures.
Performances result showed that these approaches can be pro-
vided more accurate scour depth prediction than those obtained
using other artificial intelligence approaches and traditional meth-
ods (Najafzadeh and Barani, 2011; Najafzadeh and Azamathulla,
2013a, 2013b; Najafzadeh et al., 2013a, 2013b, 2013c, 2013d, 2014).

The main objective of this study is to investigate the efficiency
of the GMDH networks for predicting the abutment scour with
armored bed. The GMDH network is developed using GSA, PSO,
and BP algorithms. Performances of the proposed approaches are
compared with those yielded using traditional methods.

1.1. Data presentation

Local scour depth around abutments with armored beds
depends on properties of sediment size, abutments geometry,
and characterization of approaching flow (e.g., Dey et al., 2008;
Dey and Barbhuiya, 2004). Therefore, the effective parameters on
the abutment scour can be expressed as follows:

dsa ¼ f ðUca; ρs; g; l; ρ;h; t; da; dÞ ð1Þ
where dsa, Uca, ρs, g, l, ρ, h, t, da, and d are the scour depth due to
armored bed, critical velocity for armor-layer particles, mass
density of sediments, acceleration due to gravity flow depth,

length of abutment, mass density of water, approaching flow
depth, thickness of armor-layer, medium diameter of armor-layer
particles, and medium diameter of bed sediments, respectively.

Using dimensional analysis, group of dimensionless parameters
was resulted as follows:

dsa=l¼ f ðKs; Fca;h=l; t=da; da=dÞ ð2Þ

where Fca is the critical abutment Froude number. The Fca is
defined as follows:

Fca ¼Uca=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρs=ρ�1Þ:g:l

q
ð3Þ

In addition, Ks is the abutment shape factor. Ks value depends
on abutments geometry. In this study, abutment shape factor
being 1 for vertical-wall abutments, 0.82 for 451 wing-wall
abutments, and 0.75 for semicircular abutments (Dey and
Barbhuiya, 2004). Details of abutments geometry are given in
Table 1. Also, schematic sketches of abutments are illustrated in
Fig. 1. General configuration of scour process at an abutment in an
thinly armored layer was illustrated in Fig. 2. In Fig. 2, δ parameter
is depth of secondary armor-layer in scour hole. In case of
applications of artificial intelligence models to evaluate local scour
depth, using of grouped dimensionless parameters indicated
better predictions of scour depth than that of dimensional para-
meters (e.g., Najafzadeh and Barani, 2011; Azamathulla et al., 2010;
Guven and Gunal, 2008a). In this way, Eq. (2) is used to develop
the GMDH networks. Data sets were collected from Dey and
Barbhuiya (2004) experiments. Ranges of input and output para-
meters used for scour modeling are given in Table 2. Out of a total
of 99 data sets, about 75% (74 data sets) are selected randomly
for training, whereas the remaining 25% (25 sets) are used to
test models.

Table 1
Dimensions of abutments used in the scour depth modeling.

Designation Vertical-wall
abutment

451 wing-wall
abutment

Semicircular-wall
abutment

lðmÞ bðmÞ lðmÞ bðmÞ lðmÞ bðmÞ

Type 1 0.06 0.12 0.06 0.18 0.06 0.12
Type 2 0.08 0.16 0.08 0.24 0.08 0.16
Type 3 0.1 0.2 0.1 0.3 0.1 0.2

Fig. 1. Different types of abutments used for the scour depth modeling.

Fig. 2. General configuration of scour process at an abutment in an thinly armored
layer (Dey and Barbhuiya, 2004).

Table 2
Ranges of input and output parameters used to
develop the GMDH networks.

Parameters Ranges

h 0.099–0.154 (m)
l 0.06–0.1 (m)
d 0.26–0.91 (mm)
b 0.12–0.3 (m)
da 1.15–5.45 (mm)
t 4–15 (mm)
Uca 0.0197–0.909 (m/s)
ρ 1000 (kg/m3)
ρs 2650 (kg/m3)
dsa 0.103–0.283 (m)
g 10 (m/s2)
Ks 0.75–1

M. Najafzadeh et al. / Ocean Engineering 104 (2015) 387–396388



1.2. Models descriptions

In this section, details of the GMDH network are discussed.
Also, mechanism development of GMDH network using the PSO,
GSA, and BP algorithms are presented.

2. Group method of data handling (GMDH)

The GMDH network is a learning machine based on the
principle of heuristic self-organizing, proposed by Ivakhnenko in
the 1960s. Also, it is a series of operations of seeding, rearing,
crossbreeding, selection and rejection of seeds correspond to the
determination of the input variables, and structure and para-
meters of model, and selection of model by principle of termina-
tion (Madala and Ivakhnenko, 1994). The GMDH network is a very
flexible algorithm and it can be hybridized by other evolutionary
algorithms, such as genetic algorithm (Mehrara et al., 2009;
Amanifard et al., 2008), genetic programming (Najafzadeh and
Barani, 2011; Iba and de Garis, 1996), particle swarm optimization
(Onwubolu, 2008), levenberg-marquardt (Najafzadeh et al., 2013c),
and back propagations (Najafzadeh and Azamathulla, 2013a,
2013b; Najafzadeh and Barani, 2011; Srinivasan, 2008; Sakaguchi
and Yamamoto, 2000). Previous researches established that hybri-
dizations were successful in finding solutions to problems in
different fields.

By means of the GMDH network, a model can be represented as
a set of neurons in which different pairs of them in each layer.
These neurons are connected through a quadratic and triquadratic
polynomial and thus produce new neurons in the next layer. Such
representation can be used in modeling from map inputs to
outputs. The formal definition of system identification problem
is to find a function f̂ that can be approximately used instead of
actual function f , in order to predict the output ŷ for a given input
vector X ¼ ðx1; x2; x3; :::; xnÞ as close as possible to its actual output
y. Therefore, given n observation of multi-input-single-output data
pairs so that

yi ¼ f ðxi1; xi2; xi3; :::; xinÞ ði¼ 1;2;…;MÞ ð4Þ

It is now possible to train the GMDH network to predict the
output values ŷi for any given input vector X ¼ ðxi1; xi2; xi3; :::; xinÞ,
that is

ŷi ¼ f̂ ðxi1; xi2; xi3; :::; xinÞ ði¼ 1;2;…MÞ: ð5Þ

In order to solve this problem, the GMDH builds the general
relationship between output and input variables in the form of
mathematical description, which is also called reference.

The problem is now determining the GMDH network so that
the square of difference between the actual output and the
predicted one is minimized, that is

XM
i ¼ 1

f̂ xi1; xi2; xi3; ::::; xinð Þ�yi
h i2

-min : ð6Þ

General connection between inputs and output variables can
be expressed by a complicated discrete form of the Volterra
function, a series in the form of:

y¼w0þ
Xn
i ¼ 1

wixiþ
Xn
i ¼ 1

Xn
j ¼ 1

wijxixjþ
Xn
i ¼ 1

Xn
j ¼ 1

Xn
k ¼ 1

wijkxixjxkþ :::; ð7Þ

which is known as the Kolmogorov–Gabor polynomial (Sanchez
et al., 1997; Farlow, 1984; Ivahnenko, 1971). In the present study,
quadratic polynomial of the GMDH network is used that is written

as:

Quadratic : ŷ¼ Gðxi; xjÞ ¼w0þw1xiþw2xjþw3xixjþw4x2i þw5x2j
ð8Þ

This network of connected neurons builds the general mathema-
tical relation of inputs and output variables given in Eq. (7). The
weighting coefficients of Eq. (8) are calculated using regression
techniques (Farlow,1984) so that the difference between actual output,
y, and the calculated one, ŷ, for each pair of xiand xj as input variables
is minimized. Indeed, it can be seen that a tree of polynomials is
constructed using the quadratic form given in Eq. (8) whose weighting
coefficients can be obtained by least-squares sense. In this way, the
weighting coefficients of quadratic function Gi are obtained to
optimally fit the output in the whole set of input–output data pairs,
that is

E¼

PM
i ¼ 1

yi�GiðÞ
� �2

M
-min : ð9Þ

In the basic form of the GMDH algorithm, all the possibilities of
two independent variables out of total n input variables are taken in
order to construct the regression polynomial in the form of Eq. (7) that
best fits the dependent observations ðyi; i¼ 1;2; :::;MÞ in a least-
square sense. Consequently, C2

n ¼ nðn�1Þ=2 neurons of quadratic
polynomial will be built up in the first layer of the feed forward
network from observations ðyi; xip; xiqÞ; i¼ 1;2; :::Mð Þ� �

for different
p; qA 1;2; ::::nf g. In other words, it is now possible to constructM data
triples ðyi; xip; xiqÞ; i¼ 1;2; :::Mð Þ� �

from observation using such
p; qA 1;2;…:nf g in the form

x1p x1q y1
x2p x2q y2
xmp xmq ym

2
64

3
75: ð10Þ

Using the quadratic sub-expression in the form of Eq. (7) for
each row of M data triples, the following matrix equation can be
readily obtained as:

AW ¼ Y ð11Þ

where W is the vector of unknown weighting coefficients of the
quadratic polynomial in Eq. (8)

W ¼ w0;w1;w2;w3;w4;w5f gT ð12Þ

The superscript T represents transpose of matrix.

Y ¼ y1; y2; y3; :::; yM
� �T ð13Þ

is the vector of observation values of outputs. It can be readily
seen that

A¼
1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q
1 xmp xmq xmpxmq x2mp x2mq

2
664

3
775 ð14Þ

The least-squares technique from multiple-regression analysis
leads to the solution of the normal equations in the form of:

W ¼ ðATAÞ�1ATY ð15Þ

which determines the vector of the best weighting coefficients of
the quadratic Eq. (7) for the whole set of M data triples. It should
be noted that this procedure is repeated for each neuron of the
next hidden layer according to the connectivity topology of the
network (Mehrara et al., 2009). A schematic diagram of the GMDH
network was depicted in Fig. 3.
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3. Application of PSO algorithm in the topology design of
GMDH network

The Particle swarm optimization (PSO) was inspired by the
social behavior of animals such as fish schooling, insects swarming
and birds flocking. PSO was introduced by Kennedy and Eberhart
(2001) in the mid-1990s, to simulate the graceful motion of bird
swarms as a part of a socio-cognitive study. It involves a number of
particles that are initialized randomly in the search space of an
objective function. These particles are referred to as swarm. Each
particle of the swarm represents a potential solution of the
optimization problem. The ith particle in tth iteration is associated
with a position vector, Xt

i , and a velocity vector, Vt
i , that shown as

following:

Xt
i ¼ fxti1; xti2; :::; xtiDg ð16Þ

Vt
i ¼ fvti1; vti2; :::; vtiDg ð17Þ

where D is dimension of the solution space.
The particle fly through the solution space and its position is

updated based on its velocity, the best position particle (pbest) and
the global best position (gbest) that swarm has visited since the
first iteration as,

V tþ1
i ¼ωtV t

i þc1r1ðpbestti �Xt
i Þþc2r2ðgbestt�Xt

i Þ ð18Þ

Xtþ1
i ¼ Xt

i þV tþ1
i ð19Þ

where r1 and r2 are two uniform random sequences generated
from interval [0, 1]; c1 and c2 are the cognitive and social scaling
parameters, respectively and ω t is the inertia weight that controls
the influence of the previous velocity.

Shi and Eberhart (1998) proposed that the cognitive and social
scaling parameters c1 and c2 should be selected as c1¼c2¼2 to
allow the product c1r1 or c2r2 to have a mean of 1. The performance
of PSO is very sensitive to the inertia weight ðωÞ parameter which
may decrease with the number of iteration as follows (Shi and
Eberhart, 1998; Salajegheh et al., 2008, 2009):

ω¼ ωmax�
ωmax�ωmin

tmax
:t ð20Þ

where ωmax and ωmin are the maximum and minimum values of ω,
respectively; and tmax is the limit numbers of optimization itera-
tion. Performing the GMDH and PSO algorithms is a parallel action
in each PD. The GMDH-PSO model has five input variables and one
output. For the optimization of GMDH structure, the quadratic
polynomial was selected as a second order polynomial. In addition,
Eq. (8) was considered as an objective function.

Through the optimization process, the PSO algorithm opti-
mized weighting coefficients of quadratic polynomial in each
neuron. After that error values for each neuron is calculated using
Eq. (9). Then, neurons are selected to generate the next layer. This
process could be continued until minimum error of training
network is obtained. The most significant feature of the GMDH-
PSO algorithm is interaction between GMDH network and PSO
algorithm. The other details of GMDH-PSO are presented in

literatures (Onwubolu, 2008; Onwubolu and Sharma, 2004).
Regarding this optimization process, a number of control para-
meters including range of constrain, c1, c2, number of particles,
range of ω values, maximum iteration of optimization problem
were considered as the values of the control parameters of the PSO
algorithm. These parameters were presented in Table 3.

Furthermore, from the GMDH-PSO network, corresponding
polynomials representation for selective neurons of dsa=l are as
follows:

ðdsa=lÞ11 ¼ �0:174þ0:4877Ksþ0:8634Fcaþ0:9882Ks:Fca
þ0:6999K2

s þF2ca ð21Þ

ðdsa=lÞ12 ¼ 0:5627þ0:047Fcaþ0:3577h=lþFca:h=lþ0:91575F2ca
�0:03244ðh=lÞ2 ð22Þ

ðdsa=lÞ15 ¼ �0:21þ0:38234Ksþ0:7835h=lþ0:9397Ks:h=l

þ0:10873K2
s �0:1591ðh=lÞ2 ð23Þ

ðdsa=lÞ19 ¼ 0:06488�0:0635Fcaþ0:02586da=dþ0:5286Fca:da=d

�0:5F2ca�0:02852ðda=dÞ2 ð24Þ

ðdsa=lÞ21 ¼ 0:15818þ0:6146ðdsa=lÞ11þ0:1837ðdsa=lÞ12�0:0056ðdsa=lÞ11
:ðdsa=lÞ12�0:1087ððdsa=lÞ11Þ2þ0:16431ððdsa=lÞ12Þ2 ð25Þ

ðdsa=lÞ25 ¼ 0:4563þ0:07572ðdsa=lÞ12þ0:4246ðdsa=lÞ19þ0:15943ðdsa=lÞ12
:ðdsa=lÞ19þ0:02396ððdsa=lÞ12Þ2�0:05948ððdsa=lÞ19Þ2 ð26Þ

ðdsa=lÞ26 ¼ 0:3548þ0:7127ðdsa=lÞ15�0:2295ðdsa=lÞ19þ0:8149ðdsa=lÞ19
:ðdsa=lÞ16�0:3395ððdsa=lÞ19Þ2�0:2798ððdsa=lÞ16Þ2 ð27Þ

ðdsa=lÞ31 ¼ 0:1838þ0:09817ðdsa=lÞ21þ0:75739ðdsa=lÞ25þ0:23978ðdsa=lÞ25
:ðdsa=lÞ21�0:08547ððdsa=lÞ25Þ2�0:1274ððdsa=lÞ21Þ2 ð28Þ

ðdsa=lÞ33 ¼ �0:2248þ0:58646ðdsa=lÞ25þ0:6342ðdsa=lÞ26þ0:09489ðdsa=lÞ25
:ðdsa=lÞ26�0:10057ððdsa=lÞ25Þ2�0:04138ððdsa=lÞ26Þ2 ð29Þ

ðdsa=lÞ41 ¼ �0:06372þ0:32416ðdsa=lÞ31þ0:7235ðdsa=lÞ33þ0:05429ðdsa=lÞ31
:ðdsa=lÞ33�0:06021ððdsa=lÞ31Þ2�0:00161ððdsa=lÞ33Þ2 ð30Þ

In which superscript and subscript of each parameter present
the number of pertaining layer and neuron, respectively.

3.1. Application of BP algorithm in the topology design of GMDH
network

In this section, the learning method of the improved GMDH
network is explained in brief. As one example, the following case is
considered. In Fig. 3, xv and zs are the input and intermediate variables,
respectively. Wts denotes the weight vector. Furthermore, Xts is the

Fig. 3. General structure of the GMDH network.

Table 3
Values of the PSO properties for prediction of the
scour depth.

Parameter Range

Omega 0.04–0.09
Number of particles 200
Number of variables 6
Maximum iteration 400
Error 0.0001
C1 and C2 1.5
Weighting coefficients �0.5 to 1
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input vector for the neurons (t¼number of layer and s¼number of
neuron in layer). These variables are defined as follows:

E¼ ðy� ŷÞ2
2

ð31Þ

ŷ¼W21:X21 ð32Þ

z1 ¼W11:X11 ð33Þ

z2 ¼W12:X12 ð34Þ

W21 ¼ w0
21;w

1
21;w

2
21;w

3
21;w

4
21;w

5
21

� �T ð35Þ

W11 ¼ w0
11;w

1
11;w

2
11;w

3
11;w

4
11;w

5
11

� �T ð36Þ

W12 ¼ w0
12;w

1
12;w

2
12;w

3
12;w

4
12;w

5
12

� �T ð37Þ
each of weighting coefficients is corrected based on the back propaga-
tion method (Sakaguchi and Yamamoto, 2000; Najafzadeh and Barani,
2011). The partial differentiation is taken for the error function based
on the chain rule, that is,

∂E
∂W2s

¼ ∂E
∂ŷ

:
∂ŷ

∂W2s
ð38Þ

∂E
∂W1s

¼ ∂E
∂ŷ

:
∂ŷ
∂X2s

:
∂X2s

∂zs
:
∂zs

∂W1s
ð39Þ

Thus, the learning laws are obtained as follows:

Wnew
2s ¼Wold

2s þη:
∂E
∂ŷ

:X2s ð40Þ

Wnew
1s ¼Wold

1s þη:
∂E
∂ŷ

:
∂ŷ
∂X2s

∂X2s

∂zs
X1s ð41Þ

where η is learning rate that is between 0 and 1.
As increasing the layer, the update rules corresponding to each

layer are derived based on the same idea. The initial layer is simply
the input layer. The first layer is created by computing regressions
of the input variables and then choosing the best ones. The second
layer is created by computing regressions of the values in the first
layer along with the input variables. This means that the algorithm
essentially builds polynomials of polynomials. Again, only the best
of them are chosen by Eq. (8). This mechanism will be continued
until a pre-specified selection criterion is met. In output layer,
error of training network estimated by Eq. (9) and the new
weighting coefficients are calculated using Eqs. (38)–(41). Again,
output of each neuron is estimated from the first layer to output
layer. This process is called feed forward and the correction of
weighing coefficients of a network is called backward pass
(Sakaguchi and Yamamoto, 2000; Srinivasan, 2008). Furthermore,
from the GMDH-BP network, corresponding polynomials repre-
sentation for selective neurons of dsa=l are as follows:

ðdsa=lÞ11 ¼ 0:541þ0:4164Ks�0:09356Fcaþ2:17513Ks:Fca�1:0022K2
s

�0:97951F2ca ð42Þ

ðdsa=lÞ15 ¼ 0:41034�0:14847Ksþ0:5848h=lþ0:2322Ks:h=l

þ0:0288K2
s �0:09417ðh=lÞ2 ð43Þ

ðdsa=lÞ17 ¼ �0:4234þ1:4967h=lþ0:0181da=dþ1:3084ðh=lÞ:ðda=dÞ
�0:8662ðh=lÞ2�0:5636ðda=dÞ2 ð44Þ

ðdsa=lÞ21 ¼ �45:208þ109:022ðdsa=lÞ11�7:957ðdsa=lÞ15þ9:388ðdsa=lÞ11
:ðdsa=lÞ15�63:2207ððdsa=lÞ11Þ2þ2:679ððdsa=lÞ15Þ2 ð45Þ

ðdsa=lÞ23 ¼ �42:737þ102:24ðdsa=lÞ15�2:004ðdsa=lÞ17þ3:4359ðdsa=lÞ15
:ðdsa=lÞ17�59:076ððdsa=lÞ15Þ2�0:0914ððdsa=lÞ17Þ2 ð46Þ

ðdsa=lÞ31 ¼ �1:0827þ1:8177ðdsa=lÞ21þ0:293ðdsa=lÞ23�0:012ðdsa=lÞ21
:ðdsa=lÞ23�0:179ððdsa=lÞ21Þ2�0:0155ððdsa=lÞ23Þ2 ð47Þ

In which superscript and subscript of each parameter present
the number of pertaining layer and neuron, respectively.

3.2. Application of GSA algorithm in the topology design of GMDH
network

Recently, a novel heuristic search algorithm whish is called
Gravitational Search Algorithm (GSA), has been proposed moti-
vated by gravitational law and laws of motion. This algorithm has
high performance in solving various optimization problems
(Rashedi et al., 2009).

In GSA, a set of agents called masses are introduced to find the
optimum solution by simulation of Newtonian laws of gravity and
motion (Rashedi et al., 2011; Li and Zhou, 2011; Najafzadeh and
Azamathulla, 2013a, 2013b; Najafzadeh and Lim, 2014). To
describe the GSA consider a system with s masses in which the
position of the ith mass is defined as follows:

Xi ¼ ðx1i ; :::; xdi ; :::; xni Þ ; i¼ 1;2; :::; s ð48Þ
where xdi is the position of ith mass in the dth dimension and n is
dimension of the search space. The mass of each agent is
calculated after computing current population's fitness as follows:

qiðtÞ ¼
f itiðtÞ�worstðtÞ
bestðtÞ�worstðtÞ ð49Þ

MiðtÞ ¼
qiðtÞPs

j ¼ 1
qjðtÞ

ð50Þ

where MiðtÞ and f itiðtÞ represent the mass and the fitness value of
the agent i at t, and, worstðtÞ and bestðtÞ are defined as follows (for
a minimization problem):

worstðtÞ ¼ max
jA f1;::;sg

f itjðtÞ ð51Þ

bestðtÞ ¼ min
jA f1;::;sg

f itjðtÞ ð52Þ

To compute the acceleration of an agent, total forces from a set
of heavier masses should be considered based on gravity law (Eq.
(53)). Also, it is followed by calculation of agent acceleration using
motion law (Eq. (54)).

Fdi ðtÞ ¼
X

jAkbest;ja i

randjGðtÞ
MjðtÞMiðtÞ
RijðtÞþε

ðxdj ðtÞ�xdi ðtÞÞ ð53Þ

adi ðtÞ ¼
Fdi ðtÞ
MiðtÞ

¼
X

jAkbest;ja i

randjGðtÞ
MjðtÞ

RijðtÞþε
ðxdj ðtÞ�xdi ðtÞÞ ð54Þ

Afterward, the next velocity of an agent is calculated as a
fraction of its current velocity added to its acceleration (Eq. (55)).
Then, its position could be calculated using Eq. (56).

vdi ðtþ1Þ ¼ randi � vdi ðtÞþadi ðtÞ ð55Þ

xdi ðtþ1Þ ¼ xdi ðtÞþvdi ðtþ1Þ ð56Þ
where randi and randj are two uniform random in the interval [0,
1], ε is a small value, and RijðtÞ is the Euclidian distance between
two agents i and j that were defined as RijðtÞ ¼ ‖XiðtÞ;XjðtÞ‖2. kbest
is the set of first K agents with the best fitness value and biggest
mass. kbest is a function of time, initialized to K0 at the beginning
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and decreasing with time. Here, K0 is set to s (total number of
agents) and is decreased linearly to 1. In GSA, the gravitational
constant, G, will take an initial value, G0, and it will be reduced by
time:

GðtÞ ¼ GðG0; tÞ ð57Þ
In present study, we used Eq. (58) for the gravitational

constant,

GðtÞ ¼ G0e�α t
T ð58Þ

Through optimization process, values for number of agents,
maximum number of iterations, α, and G0 values were fixed. The
values of the control parameters of the GSA algorithm were given
in Table 4. In fact, GSA optimized weighting coefficients in each
neuron of the GMDH network. Furthermore, from the GMDH-GSA
network, corresponding polynomials representation for selective
neurons of dsa=l are as follows:

ðdsa=lÞ11 ¼ 0:5995þ0:6095Ksþ0:76673Fcaþ0:74015Ks:Fca
�0:2944K2

s þ0:94394F2ca ð59Þ

ðdsa=lÞ15 ¼ 0:4358þ0:51736Ksþ0:5559h=lþ0:33071Ks:h=lþ0:21K2
s

�0:08358ðh=lÞ2 ð60Þ

ðdsa=lÞ19 ¼ 0:3724þ0:7799Fcaþ0:3179da=dþ0:17233ðFcaÞ:ðda=dÞ
þ0:6874ðFcaÞ2�0:0242ðda=dÞ2 ð61Þ

ðdsa=lÞ22 ¼ �0:3542þ0:48336ðdsa=lÞ11�0:1338ðdsa=lÞ15þ0:22735ðdsa=lÞ11
:ðdsa=lÞ15þ0:001213ððdsa=lÞ11Þ2þ0:19606ððdsa=lÞ15Þ2 ð62Þ

ðdsa=lÞ23 ¼ 0:21042þ0:002811ðdsa=lÞ15�0:16977ðdsa=lÞ19þ0:18928ðdsa=lÞ15
:ðdsa=lÞ19þ0:1585ððdsa=lÞ15Þ2þ0:10564ððdsa=lÞ19Þ2 ð63Þ

ðdsa=lÞ31 ¼ �0:46056þ0:76534ðdsa=lÞ21þ0:81063ðdsa=lÞ23þ0:2897ðdsa=lÞ21
:ðdsa=lÞ23�0:19399ððdsa=lÞ21Þ2�0:2961ððdsa=lÞ23Þ2 ð64Þ

In which superscript and subscript of each parameter present
the number of pertaining layer and neuron, respectively.

4. Results and discussion

The performances of the GMDH networks for training and
testing stages were presented in this section. In the models
development, errors obtained in each selective neuron within
the GMDH-BP, GMDH-PSO, and GMDH-GSA networks were indi-
cated in Fig. 4. Also, proposed structures of the GMDH networks
were illustrated in Figs. 5–7. For the GMDH-PSO model, Fig. 5
indicated 4, 3, 2, and 1 selective neurons (or polynomial neuron) in
the first, second, third, and fourth layers, respectively. Fig. 6
illustrated selective polynomial neurons of the GMDH-BP model
for prediction of local scour depth at abutments. Through the

GMDH-BP development, 3 (1st, 5th, and 7th neurons), 2 (2nd and
3rd neurons), and 1 polynomial neurons were generated in the 1st,
2nd, and 3rd, respectively. Furthermore, Fig. 7 indicated structure
of the GMDH-GSA model in form of 3, 2, and 1 selective neurons
for the 1st, 2nd, and 3rd layers, respectively.

In the present study, several traditional equations were utilized
to evaluate abutment scour depth (Table 5). Performances of
alternative GMDH networks are compared with those obtained
traditional methods. Correlation coefficient (R), root mean square
error (RMSE), and mean absolute percentage of error (MAPE),

Table 4
Values of the GSA properties for predicting the
scour depth.

Parameter Range

Alpha 20
G0 100
Number of variables 6
Maximum iteration 100
Error 0.00001
Number of agents 50
Weighting coefficients �1 to 1

Fig. 4. Values of training errors related to the GMDH networks.

Fig. 5. Proposed structure of the GMDH-PSO network for abutment scour depth
prediction.

Fig. 6. Proposed structure of the GMDH-BP network for abutment scour depth
prediction.

Fig. 7. Proposed structure of the GMDH-GSA network for abutment scour depth
prediction.
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BIAS, and scatter index (SI) which are commonly used as indicator
of errors prediction in training and testing stage (Najafzadeh et al.,
2013d):

R¼

PM
i ¼ 1

ðdsa=lÞiðObservedÞ �ðdsa=lÞðObservedÞ
h i

ðdsa=lÞiðPredictedÞ �ðdsa=lÞðPredictedÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i ¼ 1

ðdsa=lÞiðObservedÞ �ðdsa=lÞðObservedÞ
h i2

:
PM
i ¼ 1

ðdsa=lÞiðPredictedÞ �ðdsa=lÞðPredictedÞ
h i2s

ð69Þ

RMSE¼

PM
i ¼ 1

ðdsa=lÞiðPredictedÞ �ðdsa=lÞiðObservedÞ
h i2

M

2
6664

3
7775
1=2

ð70Þ

MAPE¼ 1
M

XM
i ¼ 1

ðdsa=lÞiðPredictedÞ �ðdsa=lÞiðObservedÞ
ðdsa=lÞiðobservedÞ

�����
������ 100

" #
ð71Þ

BIAS¼

PM
i ¼ 1

ðdsa=lÞiðPredictedÞ �ðdsa=lÞiðObservedÞ
h i

M
ð72Þ

SI ¼ RMSE

ð1=MÞ PM
i ¼ 1

ðdsa=lÞiðObservedÞ
ð73Þ

Performances results for training stages indicate that the
GMDH-BP produced the scour depth prediction with lower error
(RMSE¼0.21 and MAPE¼8.607) and higher coefficient correlation
(R¼0.96) compared to the GMDH-PSO and GMDH-GSA models. SI
and BIAS obtained by the GMDH-BP were 0.113 and 0, respectively.
Furthermore, the GMDH-PSO model provided relatively lower
error of scour prediction (MAPE¼13.14 and BIAS¼0.005) than
those obtained using the GMDH-GSA (MAPE¼18.23 and
BIAS¼0.077). From statistical parameters of RMSE, MAPE, and
BIAS, it can be said that GMDH-BP model is quantitatively superior
to the GMDH-PSO and GMDH-GSA networks. Fig. 8 illustrates
scatter plot of predicted values of scour depth using alternative
GMDH networks versus those of observed values for training
stages. Statistical error parameters for training stages were pre-
sented in Table 6.

From the models training, it can be said that GMDH-BP net-
work provided a structure with fewer selective neurons (6
neurons) in comparison with the GMDH-PSO and GMDH-GSA
models. In addition, volume of calculations for the GMDH-BP is
lower than the GMDH-PSO and GMDH-GSA models.

Performances for testing stages of the GMDH networks indi-
cated that the GMDH-PSO predicts the scour depth with relatively
higher correlation coefficient (R¼0.94) than the GMDH-BP
(R¼0.93) and GMDH-GSA (R¼0.87) networks. Furthermore, the
GMDH-BP model provided relatively lower error of scour predic-
tions (RMSE¼0.357 and MAPE¼12.9) than the GMDH-PSO model
(RMSE¼0.388 and MAPE¼14.39). Another interesting point is
that, the GMDH-BP and GMDH-PSO networks provided same error
of local scour prediction in term of SI parameter. BIAS values
showed that GMDH-BP network (BIAS¼0.11) produced relatively

good prediction for the abutment scour depth, compared to the
GMDH-PSO (BIAS¼0.145) and GMDH-GSA (BIAS¼0.175) models.
Evaluation of statistical parameters for the GMDH networks
demonstrated that combination of the GMDH and BP algorithms
through the iterative process produced good performances in
comparison with other models.

Fig. 9 illustrates scatter plot of predicted values of scour depth
using alternative GMDH networks versus those of observed values
for testing stages.

From Table 6, it can be found that performances of traditional
equations produced quite higher error of scour prediction com-
pared to the alternative GMDH networks. Lim (1997) equation
predicted the abutment scour depth with lower error
(RMSE¼0.69, MAPE¼20.31, and SI¼0.39) in comparison with
other traditional equations. BIAS error parameters related to the
qualitative evaluation indicated that Lim (1997) equation has the
quite lower over predictions than those obtained using other
traditional equations. It is apparent that Eq. (66) provided the
scour depth prediction with relatively higher accurate than those

Table 5
Traditional equations used to predict the abutment scour depth.

Traditional equations Authors Eq. no

dsa=l¼ 1:8Ks:ðh=lÞ0:5 Lim (1997) (65)

dsa=l¼ 2:27Ks:ðρs=ρ�1Þ0:305ðh=lÞ0:265F0:61c þh=l Hec-18 (Froehlich, 1989) (66)

dsa=l¼ 7:273Ks:ðρs=ρ�1Þ0:165ðh=lÞ0:265F0:33c
Hec-18 (Richardson et al., 2001) (67)

dsa=l¼ 5:16Ks:ðh=lÞ0:18F0:26ca :ðt=daÞ�0:19:ðd=daÞ�0:15 Dey and Burbhuiya (2004) (68)

Fig. 8. Scatter plot of observed and predicted scour depth for training stages of the
GMDH networks.

Table 6
Statistical results of the GMDH networks for training and testing stages.

Training stage

Network R RMSE MAPE BIAS SI

GMDH-BP 0.96 0.21 8.607 0.00 0.113
GMDH-PSO 0.92 0.294 13.14 0.005 0.158
GMDH-GSA 0.90 0.341 18.23 0.077 0.183

Testing stage

Network R RMSE MAPE BIAS SI

GMDH-BP 0.93 0.357 12.9 0.11 0.26
GMDH-PSO 0.94 0.388 14.38 0.145 0.224
GMDH-GSA 0.87 0.45 16.35 0.175 0.263
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traditional equations given by Eq. (67) (RMSE¼4.4, MAPE¼103.52,
and BIAS¼1.59) and Eq. (68) (RMSE¼2.74, MAPE¼168.97, and
BIAS¼2.64). Statistical results yielded by traditional equations for
evaluating the abutment scour depth are given in Table 7. Fig. 10
illustrates scatter plot of predicted values of scour depth using
empirical equations versus those observed values.

To clarify the new contributions of this study, efficiency of
GMDH networks was investigated by three abutments shapes. In
this way, performances of GMDH networks were presented for
semicircular, vertical-wall, and 451 wing-wall abutments in
Table 8. Results indicated that GMDH-BP network produced local
scour depth around semicircular abutment with lower error of
scour prediction (RMSE¼0.125 and MAPE¼8.24) than those
obtained using the GMDH-PSO (RMSE¼0.16 and MAPE¼10.41)
and GMDH-GSA (RMSE¼0.26 and MAPE¼20.223) models. For the
vertical-wall abutment, the GMDH-BP network similar provided
more accurate prediction than the other models. Also, perfor-
mances of the GMDH networks for the 451 wing-wall abutments
indicated that the GMDH-BP model (RMSE¼0.57 and
MAPE¼22.07) predicted the scour depth with quite higher accu-
racy compared to the GMDH-PSO (RMSE¼0.56 and MAPE¼23.06)
and GMDH-GSA (RMSE¼0.95 and MAPE¼43.87) models.

4.1. Sensitivity analysis

To determine the importance of each input variable on the
scour depth, the GMDH-BP network was applied to perform a
sensitivity analysis. The analysis is conducted such that, one
parameter of Eq. (2) is eliminated each time to evaluate the effect
of that particular input on output. Results of the analysis indicated
that Fca (R¼0.85, RMSE¼0.444, and SI¼0.233) is the most
effective parameter on the scour depth whereas the t=da
(R¼0.94, RMSE¼0.233, and SI¼0.14) has the least influence on
scour depth for the GMDH-BP model, respectively. The other
effective parameters on the ds=l were Ks, h=l, and da=d, ranked
from higher to lower values, respectively. Statistical error

parameters yielded from sensitivity analysis are given in Table 9.
To obtained new contribution of this study, effects of models
output on the variations of Fca parameter were investigated. In this
way, the discrepancy ratio (DR), known as the ratio of predicted
and observed values, was utilized to quantify the sensitivity of the
proposed models to Fca parameter. A DR value of 1 shows a
promisingly perfect agreement, while values greater (or smaller)
than 1 indicate over (or under) prediction of the scour depth.
Variations of DR values were plotted versus the logarithm of Fca.

The result of the GMDH-BP model was illustrated in Fig. 11. The
minimum, mean, and maximum DR values for the GMDH-BP
model were obtained 0.77, 1.048, and 1.45, respectively. For
0.251oFcao0.851, DR values decrease thereafter increase. Also,
it indicates that GMDH-BP model has high over prediction of scour
depth. For Fca¼0.037, Fig. 11 illustrates that the GMDH-BP model
provides good agreement with the observed scour depth.

The results of GMDH-PSO model were shown in Fig. 12. The DR
values were yielded between 0.65 and 1.389. Also, mean value of
DR was 1.061. For 0:251oFcao0:851, values of several points
indicate that over (or under) predictions of the scour depth are
met. Also, GMDH-PSO model produces relatively accurate scour
depth because the scour depth values are trend to 1. The results of
GMDH-GSA model were shown in Fig. 13. The DR values were
yielded between 0.46 and 3.36. Also, mean value of DR was 1.23.
For 0.251oFcao0.851, several DR values become 1. For Fca¼0.037,

Fig. 9. Scatter plot of observed and predicted scour depth for testing stages of the
GMDH networks.

Table 7
Statistical results of the traditional equations for evaluating the abutment
scour depth.

Method R RMSE MAPE BIAS SI

Eq. (65) 0.54 0.69 20.31 0.0366 0.39
Eq. (66) 0.45 2.13 103.52 1.59 1.23
Eq. (67) 0.84 4.4 273.94 4.31 2.54
Eq. (68) 0.81 2.74 168.97 2.64 1.58

Fig. 10. Scatter plot of observed and predicted scour depth for evaluating the
traditional equations.

Table 8
Comparison of results GMDH networks for different shapes of bridge abutments.

Method Semicircular
abutment

Vertical-wall
abutment

451 Wing-wall
abutment

GMDH-
GSA

RMSE¼0.26 RMSE¼0.534 RMSE¼0.95
MAPE¼20.223 MAPE¼16.97 MAPE¼43.87

GMDH-
PSO

RMSE¼0.16 RMSE¼0.374 RMSE¼0.56
MAPE¼10.41 MAPE¼11.76 MAPE¼23.06

GMDH-BP RMSE¼0.125 RMSE¼0.27 RMSE¼0.57
MAPE¼8.24 MAPE¼10.75 MAPE¼22.07

Table 9
Statistical results of sensitivity analysis for the GMDH-BP.

Functions R RMSE SI

dsa=l¼ f ðFca ; h=l; t=da; da=dÞ 0.91 0.35 0.194
dsa=l¼ f ðKs; h=l; t=da; da=dÞ 0.851 0.444 0.233
dsa=l¼ f ðKs; Fca ; t=da; da=dÞ 0.91 0.336 0.17
dsa=l¼ f ðKs; Fca ;h=l; da=dÞ 0.94 0.233 0.14
dsa=l¼ f ðKs; Fca ;h=l; t=daÞ 0.94 0.26 0.14
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GMDH-GSA model produces has remarkably higher under predic-
tion of scour depth in comparison with the GMDH-BP and GMDH-
PSO models.

5. Conclusion

In this study, abutment scour depth in thinly armored beds was
predicted using alternative GMDH networks. The structure of
GMDH network was trained using back propagation, particle
swarm optimization, and gravitational search algorithm to deter-
mine weighting coefficients of quadratic polynomials. Data sets for
performing the training and testing stages of alternative GMDH
networks were collected from literature. Five inputs and one
output parameters were assigned through the dimensional analy-
sis for the abutment scour depth modeling due to thinly armored
bed and clear water conditions. Furthermore, traditional equations

given by Froehlich (1989), Lim (1997), Richardson et al. (2001), and
Dey and Barbhuiya (2004) were used for comparisons.

Performing the proposed models for training stage indicated
that GMDH-BP model produced relatively lower error (RMSE¼
0.21 and MAPE¼8.607) and higher correlation coefficient (R¼
0.96) compared to those obtained using the GMDH-PSO and
GMDH-GSA models. Through the testing stage, GMDH-BP model
yielded better prediction with lower error (RMSE¼0.357 and
MAPE¼12.9) rather than that obtained using performing the
GMDH-PSO and GMDH-GSA models. From the traditional equa-
tions, Eq. (65) proposed by Lim (1997) predicted the abutment
scour depth with compromisingly good agreements (RMSE¼0.69
and MAPE¼20.31) in comparison with other ones. In fact, Eq. (65)
was validated for wider ranges of experimental datasets than
those observed by Dey and Burbhuiya (2004). In general, tradi-
tional equations produced the scour depth with significantly
higher error than those obtained using alternative GMDH net-
works. Results of sensitivity analysis indicated that Fca is the most
important parameters in modeling of scour depth by the GMDH-
BP model. Also, through a brief comparative study, the GMDH-BP
network provided good performances for semicircular, vertical-
wall, and 451 wing-wall abutments compared to the GMDH-PSO
and GMDH-GSA models.

In general, application of the evolutionary and iterative algo-
rithms in topology design of the GMDH network proved that the
GMDH network can be used successfully in prediction of scour
problems in hydraulic engineering field.
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