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Gene-Expression Programming, Evolutionary Polynomial
Regression, and Model Tree to Evaluate Local
Scour Depth at Culvert Outlets

Mohammad Najafzadeh' and Ali Reza Kargar?

Abstract: Protection of the downstream of culvert outlets against scour process, as a water conveyance structure, is a highly significant issue
in design of culverts. Frequent field and experimental investigations were carried out to produce a relationship between the scour depth due to
the governing variables. However, existing empirical equations do not always provide a precise estimation of the scour depth due to the
complexity of the scour phenomena. In this investigation, gene-expression programming (GEP), model tree (MT), and evolutionary poly-
nomial regression (EPR) are utilized to predict the scour depth downstream of culvert outlets. Input variables—considering effective param-
eters on the scour depth—were defined as sediment size at downstream, geometry of culvert outlets, and flow characteristics in upstream and
downstream. Experimental datasets to develop the models were collected from different literature. Performances of the proposed models
for the training and testing phases were assessed using several statistical measures. Results of performances indicated that EPR provided
the lowest level of precision including index of agreement (IOA = 0.958) and root mean squared error (RMSE = 0.419) for prediction
of local scour depth at culvert outlets than those obtained using MT (IOA = 0.947 and RMSE = 0.471) and GEP (IOA = 0.943 and
RMSE = 0.487). In terms of accuracy, all proposed equations extracted from artificial intelligence approaches had remarkable superiority
to the traditional equations. Ultimately, it has been proven that mathematical expressions given by evolutionary computing tools had sufficient
generalization to present an accurate prediction of the local scour depth with respect to preserving physical meaning of results. DOI: 10.1061/
(ASCE)PS.1949-1204.0000376. © 2019 American Society of Civil Engineers.
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Statistical measures.

Introduction

Culvert outlets are hydraulic structures that control flow. Occasion-
ally, culvert outlets are utilized for management of excessive
run off. One of the most remarkable considerations for designing
of culvert outlets is estimation of scour depth at outlets. Scouring
process at outlets can occur due to several shortcomings in its
designing. Scouring at outlets for both free and submerged flow
is the most significant factor leading to the irreversible damages
(e.g., Abt et al. 1985, 1987; Lim 1995). In this way, extensive
laboratory investigations were carried out to identify effective
parameters on the scour depth at culvert outlets. A large number
of experimental research works were reported from several labora-
tory works. In fact, several empirical equations were extracted from
experimental datasets on the basis of restricted ranges of observed
data (Laushey et al. 1967; Opie 1967; Bohan 1970; Abt et al. 1984,
1985, 1987; Abida and Townsend 1991; Lim 1995; Liriano et al.
2002). In the case of traditional equations, performances of experi-
ments indicated that there is no a general equation to provide a
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precise estimation of scour depth at culvert outlets which can be
validated for a board range of experimental datasets.

In the recent decade, some artificial intelligence (Al) approaches
such as artificial neural networks (ANNs), adaptive neuro-fuzzy
inference system (ANFIS), genetic programming (GP), gene-
expression programming (GEP), group method of data handling
(GMDH), and support vector machine (SVM) have been applied
to predict the local scour depth at various hydraulic structures such
as downstream of grade-control structures, ski-jump bucket spill-
ways, bridge abutments, bridge piers, culvert outlets, downstream
of sill structure, and below offshore structures (e.g., Azmathullah
et al. 2005; Guven and Gunal 2008a, b; Azamathulla and Ghani
2010a; Ghazanfari-Hashemi et al. 2011; Azamathulla 2012a, b;
Guven and Azamathulla 2012; Najafzadeh and Sarkamaryan 2018;
Ebtehaj et al. 2018). In the case of scour depth prediction at culvert
outlets, it should be noted that a large number of studies conducted
by AI approaches were a suitable platform in order to reach the
scour depth prediction with permissible level of accuracy rather
than empirical equations (Liriano and Day 2001; Azamathulla and
Ghani 2010b; Azamathulla and Haque 2012, 2013; Najafzadeh
2015). Among mentioned Al models, GP, GEP, and GMDH ap-
proaches have the capability of describing a relationship among
input and output variables for different realms of scouring prob-
lems. On the contrast, the most primary concern related to the
ANNs and ANFIS approaches is that these models have not only
a black box nature but also relatively voluminous computation
(e.g., Azamathulla and Ghani 2010a, b; Azamathulla and Haque
2012, 2013; Najafzadeh 2015).

Recently, evolutionary polynomial regression (EPR) and model
tree (MT) techniques extracted an input-output model based best
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formulations to obtain physical meaning of governing parameters
in the scour depth prediction problems. In fact, these two Al models
were used to understand scouring process at hydraulic structures, as
evaluation of group piers scour depth under waves and currents
conditions (Etemad-Shahidi and Ghaemi 2011; Ghaemi et al.
2013), geometry of scour hole downstream of spillway (Pal et al.
2012; Samadi et al. 2014), prediction of scour depth downstream of
grade-control structures and sluice gates (Laucelli and Giustolisi
2011; Najafzadeh et al. 2018b), bed of rectangular channels
(Najafzadeh et al. 2018a), and below pipelines induced currents
(Najafzadeh and Sarkamaryan 2018). Furthermore, EPR and MT
technique based explicit formulations have not been applied yet
in the prediction of the local scour depth at culvert outlets.

In this study, EPR, MT, and GEP based formulations were
employed to predict the scour depth at culvert outlets. These Al
techniques were developed using experimental datasets. Perfor-
mance of the proposed models were investigated in both training
and testing stages by means of several statistical measures. Results
of this study were compared with those obtained using empirical
equations-based regression approaches. Additionally, parametric
study of the AI techniques was carried out to perceive physical
meaning of results. Ultimately, Fisher test was conducted to select
Al model with the best performance.

Review of Scouring Investigations at Culvert Outlets

Investigations to determine the scour depth at culvert outlets have
been carried out widely in different experimental conditions.
Laushey et al. (1967) and Opie (1967) initiated experiments set
up for culvert outlet with pipe cross-section and uniform bed sedi-
ments. In addition, a large number of experiments were performed
to find physical meaning different governing variables on local
scour depth at culvert outlets (e.g., Laushey et al. 1967; Opie 1967;
Bohan 1970; Ruff et al. 1982; Abt et al. 1984, 1985, 1987; Abida
and Townsend 1991; Lim 1995; Aderibigbe and Rajaratnam 1998;
Day et al. 2001; Liriano et al. 2002).

Ruff et al. (1982) conducted a large number of experiments to
investigate effects of flow conditions, bed material, geometry of
pipe culvert on the scour hole geometry.

They concluded that the maximum scour depth downstream of
culvert outlets was located approximately between 0.3 and 0.4 of
the maximum scour length. Abt et al. (1984) performed several ex-
periments to evaluate effects five non-cohesive bed materials on the
geometry of hole scour at culvert outlets. From his experiments, he
proposed a design curves for estimation of scour hole dimensions
for practical uses. Additionally, scour hole dimensions was corre-
lated to the discharge intensity. A simple expression-based formu-
lation was given in which dependency of the scour depth hole on
a variety of non-cohesive materials based upon various discharge
values, culvert diameter, mean grain diameter and material standard
deviation was as follows:

d de 04
d_;:3.67Fr2'57 (di;)> o0 (1)

where d; = local scour depth at culvert outlet; d, = pipe diameter
for circular outlets and outlet height for non-circular outlets; dsq =
median sediment size; o, = geometric standard deviation of
bed sediments; and Fr,; = densimetric Froude number. Fr, is
computed as

Fry=——2 )
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where p = mass density of water; U, = mean velocity at outlet; p, =
mass density of bed material; and g = acceleration due to gravity.

Abt et al. (1985) carried out experiments to investigate slope
effects on the dimensions of the scour hole at downstream of
culvert outlets. Culvert slope was varied between 0 and 10%. Re-
sults indicated that increasing in culvert slope increase the scour
depth. Also, the maximum scour hole width decreases with increas-
ing of slope higher than 5%. Scour length decreased with increase
in slope from O to 5%. Abt et al. (1987) performed experiments
with various culvert shape including arch, square, and rectangular
cross-sections. They concluded that scour length observed from
square and rectangular cross section is 40% more than that obtained
using circular culvert outlets. Blaisdell and Anderson (1988)
carried out a comprehensive investigation of scour at downstream
of cantilevered culvert outlets. From their studies, they used the
computed ultimate maximum scour hole depth to compute separate
contour maps for discharges covering a wide range of anticipated
discharges.

Abida and Townsend (1991) have set up experiments for local
scour at downstream of box-culvert outlets. From their observa-
tions, for condition of very shallow tail water, maximum scour
depth decrease with decreasing of tail-water depth. Also, Lim
(1995) performed experiments for scour at un-submerged and full
flowing culvert outlets. Analysis of the observed data indicated that
local scour depth was evaluated as a function of densimetric Froude
number (Fr,) as follow:

4 _ 04sFr, 3)
dy

Furthermore, Aderibigbe and Rajaratnam (1998) used dune
armored bed for reduction of maximum scour depth at downstream
of culvert outlets. They observed that the average reduction of the
scour depth was approximately 60%.

Day et al. (2001) investigated tail water depth and model scale
on scouring process downstream of culvert outlets. They used pipe
culverts with diameters (dy) 0.013, 0.020, 0.052,0.146, and
0.311 m. Also, sediment gradations with ds, of 0.38, 0.59, 1.4, 4.4,
and 7.9 mm were applied for experiments setup. For ratio of tail-
water depth (H) to the culvert diameter (d;) between 0.5 and 2,
following equation-based regression was obtained:

d H\ 037 H
£ =0877( — Ln(Fry) +02Ln( —) —024 (4)
dy dy do

Liriano et al. (2002) studied effects of turbulent flow structures
on the scour at culvert outlets. They analyzed the main velocities,
turbulence intensities, Reynolds stresses, and near-bed bursting
structure. Also, experimental studies indicated that initial formation
of the scour hole is related to the mean velocity exceeding the
critical velocity.

Furthermore, a large number of experimental investigations
have been reported by Federal Highway Administration (FHWA).
They proposed several empirical equations for validation of
observed data sets. Result of their works indicated that laboratory
datasets have substantial restrictions which are related to the
conditions of flow and bed materials (e.g., Kerenyi et al. 2003,
2007).

Azamathulla and Haque (2012) employed GEP model on the
basis of evolutionary computing for prediction of the local scour
depth at culvert outlets. They proposed following equation for this
purpose as
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Fig. 1. Scour process at culvert outlet: (a) definition of hydraulic parametrers physical sediment properties; and (b) configuration of geometric

parameters of and B, d,, and W,,.
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Data Presentation for Scour Depth Modeling

Prior to laboratory works for investigating the effective parameters
on the scour depth at culvert outlets, the scour depth depends on
geometry of outlets cross-section, various flow condition at up-
stream and downstream, and physical characteristics of bed mate-
rials at outlet of culvert (e.g., Opie 1967; Abtet al. 1987; Abida and
Townsend 1991; Lim 1995; Liriano et al. 2002). Therefore, the
following function is proposed for scour depth prediction:

ds :f(p’ s UOst’B’Hv Wo. ps, 9, dSOvO-g) (6)

where u, dy, H, B, and W, are the dynamic viscosity of water, the
pipe diameter for circular outlets and outlet height for non-circular
outlets, water depth at downstream of receiving channel, channel
width, and outlet width, respectively. To visualize the effective
parameters on the scour depth at outlet of culvert for unsubmerged
flow conditions, general feature of scouring process was sketched
in Fig. 1(a). Moreover, in Fig. 1(b), dy, B, and W, were specified
for both circular and box culverts.

On the basis of Buckingham 7-theorem and choosing the p, Uy,
and d,, as repeating variables, a set of nine non-dimensional param-
eters was resulted by performance of dimensional analysis:

7T9:f1(7r1,W27W377F477F577T677T777TS) (7)

Table 1. Range of datasets used for development of the proposed models

in which ™ = B/do, Ty = H/do, T3 = Wo/do, Ty = dso/do,
Ts = py/ps M6 = 0o T = g - do/Uj, g = p - Uy - do/ i, and mg =
d,/dy. In addition, the fifth dimensionless parameter is introduced
as specific gravity G,. Axiomatically, performance of algebraic
operations on dimensionless parameters always produces other
non-dimensional parameters. With getting inspiration of previous
investigations, it was found that densimetric Froude number
(Fry) was applied in estimation of the local scour depth at culvert
outlet instead of normal Froude number. Hence, with the aid of
fourth, fifth, and seventh dimensionless parameters, densimetric
Froude number can be calculated as

" = <L.L.;>°‘5 _ Y (8)
M My ms— 1 Vg ds (G, —1)

With respect to Eqgs. (7) and (8), Eq. (6) was rewritten as

d,/dy = f2(B/dy, Frq, H/dy, Wy/dy, dso/dy, 04, p - Uy - do/ 1)
9)

where p - Uy - dy/ i = Reynolds number for flow passing through
the culvert.

Due to previous experimental results, the G, ratio can was
neglected in the Eq. (9) because it varies in a very restricted
range from a practical point of view. Furthermore, effects of
Reynolds number of pipe culvert (Re,) on the local scour depth
at culvert outlets has remained meaningless (e.g., Abt et al. 1984;
Abida and Townsend 1991; Lim 1995; Liriano et al. 2002).
Therefore, Re, is removed from Eq. (9). In this way, Eq. (9)
can be re-written as

d,/dy = f>(B/dy, Frq, H/dy, Wy/dy. dsy/dy. o) (10)

Parameters

References Fl'd H/do W()/do B/do d50/d0 Ug ds/d()
Laushey et al. (1967) 1.04-3.37 0.5 1 5.6-9.4 0.16-0.4 1.3 0.42-1.16
Bohan (1970) 12.97-88.61 1 0.3-0.75 16-71 0.0007-0.0032 1.37 2.12-5.22
Rajaratnam and Diebel (1981) 4.45-37.1 0.196-3.385 0.75-1 1-86 0.0022-0.0827 1.27-1.37 0.66-6.53
Ruff et al. (1982) 5.53-13.47 0-0.45 1 11.93-61 0.0054-0.03 1.3-4.78 0.579-3.46
Abt et al. (1987) 7.13-23.13 0.45 1-2 61 0.02 1.33 2.03-4.06
Abida and Townsend (1991) 0.59-3.81 0.05-1.55 0.67-3.34 6.578 0.006-0.017 1.22-2.24 0.19-2.4
Lim (1995) 1.91-24.6 31.7-55 15-26 38.46-66.67 0.06-0.11 1.25 0.81-4.87
Day et al. (2001) 0.05-0.94 0.5-2 1 7.4 0-0.03 1.4 0.18-1.89
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Fig. 2. Histograms of variables used in the models’ implementation: (a) B/dy; (b) H/dy; (c) Wy/dy; (d) og; (e) dso/dy; (f) Fry; and (g) ds/d.
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In the case of scour depth estimation at culvert outlets, pre-
vious investigations have established that use of dimensionless
parameters had the capability to provide better performance of
Al models in comparison with that of dimensional parameters
(e.g., Azamathulla and Ghani 2010b; Azamathulla and Haque
2012, 2013; Najafzadeh 2015). In this study, Eq. (10) was applied
to develop the proposed models for prediction of scour depth
at culvert outlets. The datasets used consisted of 246 samples
collected from literature (Laushey et al. 1967; Bohan 1970;
Rajaratnam and Diebel 1981; Ruff et al. 1982; Abt et al. 1987;
Abida and Townsend 1991; Lim 1995; Day et al. 2001).

Table 1 presents ranges of input-output parameters for the scour
depth prediction. Out of the dataset, about 80% (197 datasets) and
20% (69 datasets) were dedicated randomly to perform training and
testing stages, respectively. Additionally, to conceptualize distribu-
tion pertained to the non-dimensional parameters, experimental
datasets have been demonstrated by means of frequency histograms
in Fig. 2.

Frameworks of Models Implementation

In this section, descriptions of the GEP, MT, and EPR modeling
approaches were succinctly presented. And the way of developing
the proposed Al methods are carried out to extract the best relation-
ships for prediction of scour depth at culvert outlets.

Development of GEP Model

GEP is a relatively contemporary extension of the GP approach.
Basically, general structure of GEP is programmed in terms of
mathematical expressions. The GEP approach is coded in forms
of linear chromosomes, being then expressed into Expression
Trees (ETs) (e.g., Azamathulla and Haque 2012; Ferreira 2006,
2001).

In fact, the ETs are computer programming with high level of
knowledge extraction which are occasionally employed to present
an efficient solution for a practical problem. Additionally, ETs are
opted on the basis of their fitness values obtained through solution
of practical problem. From every ET, a mathematical expression is
released in a way that summation of all equations is equal to general
solution of GEP model. Through ETs, there is a population which
will discover traits, and thus will adapt to the particular problems.
This is indicative of having sufficient time and acceptable values for
setting parameters of GEP, and consequently accurate predictions
extracted by GEP model would be remained unmasked.

Development of the GEP approach includes five steps. The first
step is to select the fitness function, f;, of an individual program (7).
This function is evaluated as follows:

C,
fi=> (M—|Cip—T)) (11)
j=1
in which M, C; j), and T); are the selection range, value returned by
the individual chromosome i for fitness case j, the largest value for
fitness case j.

In the second stage, the set of terminals 7" and the set of
function F' were selected to generate the chromosomes. In the
present study, the terminals includes a set of six independent var-
iables, as noted in Eq. (11), in form of T(d,/dy) = {B/dy, H/d,,
Wo/do, dso/dy, Frq, 04}

In the case of finding the best function set, it is essential to con-
sider general mathematical shape of empirical equations given in
literature. As mentioned in introduction section, four basic opera-
tors (+,—,%,/) and basic mathematical functions (y/, power, exp)
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Table 2. Characterization of the proposed GEP model

Parameter Description Setting

P, Function set +, —, X, /, exp, power, v/

P, Mutation rate 0.00138

P; Inversion rate 0.00546

Py One point and two-point 0.277
recombination rate respectively (%)

Ps Gene recombination rate 0.00277

Pg Gene transportation rate 0.00277

P, Maximum tree depth 5

Pg Number of gene 3

Py Number of chromosomes 30

P10 Number of generation 2,000

were applied in empirical equations given in literature (Abt
et al. 1984; Lim 1995; Day et al. 2001) so as to predict the local
scour at culvert outlets. In this way, development of GEP was
carried out on the basis of these considerations due to obtaining
physical meaning of GEP results. The third step is to configure
the chromosomal architecture. The fourth step is selection of liking
function. Ultimately, for the fifth stage, a set of genetic operators
such as mutation, inversion, one (or two)-point recombination,
gene recombination, and gene transposition are inevitably obtained
which each operator has a specific rate. The other in-depth infor-
mation about structure of GEP technique were detailed in the liter-
ature (Ferreira 2001, 20006).

Through development of GEP for the local scour depth at
culvert outlets, the functional set and the operational parameters
applied in this study were presented in Table 2. The best formu-
lation of GEP model, as a function of input-output variables,
was obtained as

dso H ds
— Fr — + Fr c——
=/ @) \/ d 4 do

d
Y Fry— (Frd +%) - (6.283 — Fry) (12)
0

In addition, the expression trees related to the above formulation
was illustrated in Figs. 3(a—c). In Fig. 3(c), constant values dem-
onstrated in the third sub-tree is 6.283 and the actual variables
are the H/d,, dsy/dy, and Fry. From Eq. (12), it can be found that
many input variables including o,, B/dy, and W,/d, have no in-
fluence on the scour depth at culvert outlets. This finding was in
good agreement with results of experimental datasets reported by
Day et al.(2001). On the other hand, as seen in Eq. (4) and H/d,,
dsy/dy, and Fr4 variables could play a crucial role in estimation of
scour depth at culvert outlets.

Development of MT Model

Among the data mining techniques, MT, as a machine learning
classifier, has the capability in order to present an efficient solution
to the practical problem by dividing it into several sub-problems
(sub-domains) which are individually distinctive from each other
and consequently the ultimate results of MT for a primary domain
is a combination of these sub-domains. In fact, MT technique is
capable of performing a multivariable regression model for input-
output variables trapped in each sub-domain (Quinlan 1992; Wang
and Witten 1997; Etemad-shahidi and Ghaemi 2011; Pal et al.
2012). As a considerable advantage, MT approach has the ability
to present solution to the class of continuous problems by means of
piecewise linear techniques. In this way, nonlinear complicated
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Fig. 3. Optimal expression tree (ET) structures extracted from GEP performance: (a) sub-ET1; (b) sub-ET2; and (c) sub-ET3.

models can be converted to several linear simple and easy-to-use
models with an acceptable precision level of approximation. Devel-
opment of MT has two main steps: (1) creating the tree structures;
and (2) extracting knowledge from it. To obtain more perception of
MT performance, a schematic diagram for the tree structures-
building approach within nine linear regression models in Fig. 4.
In fact, knowledge extraction from the MT structure related to each
sub-domains was illustrated in Fig. 4(a) and additionally a general
tree structure of MT approach was sketched in Fig. 4(b). According
to the Figs. 4(a and b), the data samples illustrated on X axis was
divided into two main segments, including X; <5 and X; > 5. If
X is smaller than (or is equal to) 5, four linear models are created.
In this way, If X, <3, then Model 1 is generated. Otherwise three
linear models are appeared in a way that If X, <7 then Model 4 is
obtained. If X; <2 then Model 9 is produced. Otherwise, Model 7
is created. Moreover, there is similar trend in order to create the rest
of linear models for range of X; > 5 in Fig. 4.

Based on the domain-splitting criterion, various efficient
approaches such as M5 model was frequently employed to develop
MT technique. M5 approach firstly generates a regression tree
by means of splitting the instance search space within a particular
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(a)

process characterized by recurrence. This process is performed to
minimize variations of the intra-subset in values (or quantities)
from the root to the node and through the branch (Wang and
Witten 1997). This variation is evaluated by means of the standard,
deviation of the values which stretch out through the branch from
the root to the node, being carried out by computing the desired
reduction in error values from testing every variable (or attribute)
at the node. The input variable that maximum level of desired error
reduction is opted. According to the Quinlan (1992) investigations,
this process will be continued until the standard deviation reduction
becomes less than a certain percent of the standard deviation of
the original dataset or when only a small quantity of data samples
(just below 5%) remain. Through MT approach, standard deviation
reduction (SDR) factor:

|Ei]
|E|

SDR = sd(E) = = sd(E;) (13)

i

in which E, E;, and sd are the set of samples that reach the node, the
set that results of splitting the node on the basis of the chosen
variable, and standard deviation, respectively. The M5 utilizes

Input-Output
Data Samples

wo

No

| Model 3 ‘ | Model 7 |

(b)

Fig. 4. Splitting the input space and prediction by MT for a input-output dataset: (a) splitting of the input space (X, x X,) into nine subspaces using
MS5 model tree; and (b) schematic diagram of creating nine linear models using a set of IF-THEN rules.
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Rule:1
IF
Frg > 6.99
THEN
dg B H Wy dsg
—~=0.7406 + 0.0083 — + 0.485—+ 0.7168— + 9.628 — + 0.0348Fry
do do do do do
Rule: 2
1F
Fry <2.437
gy > 135
THEN

ds— 51079+0824B 0098H 0.0299 0748d50+0522F
T

Otherwise,
Rule: 3

d H
—==0.726 — 0.4079— — 0.2230, + 0.2648F1,
do do

Fig. 5. Linear equations extracted from MT.

the sd parameter as an error criterion of the class values that reach
a node. Generally, as tree structure grew, linear model is created
for every inner node. This model is generated on the basis of
values corresponded to that node and consequently all the applied
test variables in the sub-tree emanated from that node. Other proc-
esses of M5 including pruning and smoothing the trees were
detailed in literature (e.g., Etemad-Shahidi and Ghaemi 2011;
Pal et al. 2012).

In the current research, the proposed MT approach has six
non-dimensional inputs and one output parameter. MT technique
was developed using three rules in form of linear multivariable
equations for the local scour depth evaluation. These three linear
equations were given Fig. 5. According to Fig. 5, F'ry and o, were
assigned as splitting parameters to create linear models. In the
first rule given by MT, corresponding linear model had no depend-
ency on o, variable. The second linear model indicated that varia-
tions of d,/d, versus W,/d, has remained meaningless and
additionally Wy/d,, B/d,, and dsy/d, have not been included
in the third linear model. Furthermore, the second linear equation
should be simultaneously valid for two ranges of Fr; <5.492 and
Fr,; £2.437. For instance, Fr; =4 is not valid Fr,; <2.437 and
consequently it cannot be satisfied in Rule 2. Overall, from Fig. 5, it
can be said that all linear equations are easy-to-use with simple
mathematical expressions in order to predict the local scour depth
at culvert outlets.

Development of EPR Model

EPR is one of the data-driven models which has the capability to
present symbolic relationships in order to characterize complicated

F 0.5
b o703 Erd oy (—o.sag =
d() O'g

d50
dy

—) + 054262097 exp (—2 @>

D22l
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systems. EPR works on the basis of a global search approach. In
fact, global search applied in the EPR technique is genetic algo-
rithm (GA) (Savic et al. 2006; Giustolisi and Savic 2006). The
general mathematical expression given by EPR are composed of
several additive terms multiplied by as many coefficients as

m

? = ay + Zaj . (Xl)Es(j'l> .
j=1

,f<(X1)ES(j,k+1) .

.- (X )ESUK)

(X, ES02) (14)

where m is the maximum number of mathematical terms, a, is
the bias term, a; is a set of coefficients for mathematical relation-
ship, X are the input variables (or independent candidate) for EPR
model, Y is the output variable predicted by EPR model, k is the
number of input variables, function f whose general mathematical
structure is selected by user, and ES is a set of user-specified
exponents (Giustolisi and Savic 2006, 2009; Savic et al. 2009;
Laucelli and Giustolisi 2011; Laucelli et al. 2012).

In the case of EPR development, three basic objective func-
tions are required to be considered. In this way, EPR searches
m-dimensional formulations by means of two or three objectives as
(1) the maximization of model accuracy; (2) the minimization of
number of model coefficients; and (3) the minimization of the num-
ber of input variables applied in the EPR modeling. In fact, multi-
objective genetic algorithm (MOGA) has been employed in the
EPR structure to find optimal mathematical relationship (e.g., Savic
et al. 2009; Altomare et al. 2013). EPR-MOGA is performed in two
various media. In the first place, setting parameters of EPR such as
type of objective functions, number of mathematical terms, range of
exponents, and type of mathematical formulation used in the EPR
modeling are defined in Excel software. Secondly, all the coeffi-
cients of mathematical relationship related to the EPR technique
are optimized by means of GA coded in MATLAB. Several math-
ematical relationships were obtained within training stage and
ultimately the best equation with the highest level of accuracy
when observed values (output variable) are compared with values
predicted by EPR model.

In the current study, to develop EPR mode for prediction of the
local scour depth at culvert outlets, W /dy, B/dy, dso/dy, H/d,
Frq and o, were considered as input variables. Furthermore, the
range of exponents EX is [-2; —1.5; —1; —0.5; 0; 0.5; 1; 1.5; 2];
the maximum number of mathematical terms (m) is equal to 5. All
the non-negative coefficients a; were allowed to be considered in
equations given by EPR model with existence of bias a. To obtain
the optimum equation by EPR, values of setting parameters were
given in Table 3.

With respect to defaults of proposed EPR model, the most
precise equation was obtained as

dy

B\2 0.5 H
454148 x 105 (2) (Mo 02(Fryg)®3 exp 05V _gse 20
d g dy d 9y

0 dy

B 2 H 1.5 %% 2
51069 x 1076 —) (— s}
* ) <d0> <d0> (do)
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The results of proposed models approach and empirical equations have been given in this section. For evaluation of statistical analysis
performances, index of agreement (IOA), root mean square error (RMSE), Akaike information criterion (AIC), and scatter index (SI)

can be defined as follows:

JOA = 1 — {V:Tl (ds/doi(Predicted) - ds/doi(Obserz:ed))2 (16)
Z{V:T] Hd.v/doi(Predicted) - ds/do(Ohser1)ed)| + |dx/dni(0bserved) - ds/dn(Observed) HZ
RMSE — Zfl:Tl (ds/dOi(Predicted) - d:/dOi(Observed))2 12 (17)
NT
AIC = NT - In(NT - RMSE?) + 2NOV (18)
57 \/(1/NT) ival ((ds‘/dOi(Predicted) - d_s/doPredicted) - (ds/dOi(Observed) - d_s/do(Obsem;ed)))2 (19)

(1/NT)

where NT = population size of observations; and NOV = number of
independent variables. The IOA as a standardized criterion for
evaluation of the proposed model prediction error ranging from
0 to 1. A value of 1 shows the most permissible performance and
additionally O shows that the proposed model stands at lowest level
of accuracy without an agreement between observed values and
predicted ones. Furthermore, AIC has the capability of evaluating
relative quality of statistical performances for a given datasets. Neg-
ative values of AIC indicates better performance of the proposed
model in comparison with positive ones.

Quantitative results of the proposed models were given in
Table 4. IOA (0.962) and RMSE (0.465) given by MT indicated
better performance for the training stage than those obtained

Table 3. Setting parameters for the proposed EPR

Parameter description Parameter setting

Function set Exponential

Type of model Statical

Type of mathematical $=ay+ err;l a (Xl)Es(j.l) o (XK)ES(JZK) «
expression f((X, )ES(J',K+1)) o f((XK)ES(j.ZK))

Exponents range -2, —1.5, —1, =0.5, 0, 0.5, 1, 1.5, 2]

Table 4. Results of performances for the proposed models and empirical
equations

Model IOA RMSE AIC SI

Training stage

NT
i=1 dx/d()i(Observed)

using EPR (IOA = 0.957 and RMSE = 0.495) and GEP (IOA =
0.941 and RMSE = 0.582). Moreover, MT provided the lowest
value of AIC (750.95) rather than GEP (AIC = 839.81) and
EPR (AIC = 776.71). In the case of SI measure, MT model with
SI of 0.231 has superiority to the GEP (SI = 0.289) and EPR
(ST = 0.246). Generally, it can be said that MT, introduced in form
of linear formulations, predicted the local scour depth with permis-
sible level of precision in comparison with other proposed models.
Qualitative performance of the proposed models for training stage
were illustrated in Fig. 6. From Fig. 6, for observed d,/d, between
0 and 2, all the proposed models indicated relatively significant
over-prediction and additionally, for d,/d, = 2-7, almost dimen-
sionless scour depth have placed in an allowable error bound.

In the testing stage, with respect to IOA and RMSE values,
Eq. (14) extracted from EPR produced the local scour depth at cul-
vert outlets with relatively lower computational error (IOA =
0.958 and RMSE = 0.419) in comparison with GEP (I0OA = 0.943
and RMSE = 0.487) and MT (I0OA = 0.947 and RMSE = 0.471).
Also, SI value was indicative of being better performance of EPR
(0.181) related to the MT (SI = 0.207) and GEP (SI = 0.217).
Overall, it should be noted that ERP model with representation
of easy-to-use mathematical expression had the most accurate pre-
diction of local scour depth compared with the other proposed
methods. On the other hand, MT and GEP have stood the second
and third ranks in terms of accuracy, respectively. In terms of quali-
tative comparisons, performances of the proposed Al approaches
for testing stage were demonstrated in Fig. 7. From Fig. 7, for the
observed d,/d, between 0.25 and 1, all the proposed models had
insignificant over-prediction, whereas for the observed d,/d, = 1
and 5, MT had relatively higher level of under-prediction in com-

EPR 0957 0495 77671 0246 parison with GEP and EPR techniques. In fact, for this range of
MT 0.962 0.465 75095 0.231 . . . .
dimensionless scour depth, almost points on Fig. 7 have placed
GEP 0941 0.582 839.81 0.289 . . ..
Testing stage in the permissible error bound for prediction of the scour depth
EPR 0958 0419 117.588 0.181 at culvert outlets. B .
MT 0947 0471 129.013 0.207 In the current study, four empirical equations were used to
GEP 0.943  0.487 132264 0.214 evaluate the local scour depth at culvert outlets. Statistical results
Eq. (1) [proposed by Abt et al. (1984)] 0.761 1 202,97 0.428 of traditional equations were given in Table 4. Eq. (1), proposed by
Eq. (3) [proposed by Lim (1995)] —4.127 4.648 353.27 1.737 Abt et al. (1984), could present relatively accurate estimation of
Eq. (4) [proposed by Day etal. (2001)] - 0.655  1.205  221.01 = 0.406 local scour depth at culvert outlets with IOA of 0.761 and RMSE
Eq& (}51) [pr0p2(6816;1 by Azamathulla 0077 1572 26925 0.823 of 1 in comparison with Eq. (3) given by Lim (1995) (IOA =
and Haque ( )] —4.127 and RMSE = 4.648). From Table 4, it can be found that
© ASCE 04019013-8 J. Pipeline Syst. Eng. Pract.
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Fig. 6. Scatter plot of observed and predicted scour depth at culvert
outlets for training of the proposed models.
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Fig. 7. Scatter plot of observed and predicted scour depth at culvert
outlets for testing of the proposed models.

Day et al. (2001) equation [Eq. (4)] has stood at the second rank in
terms of prediction precision with IOA of 0.655 and RMSE of 1.25
among empirical equations. Moreover, AIC and SI values produced
by Eq. (4) indicated this superiority to the Eq. (3) (AIC = 353.27
and SI=1.737) and Eq. (4) (AIC =221.01 and SI = 0.406).
Ultimately, statistical measures presented in Table 4 indicated that
Eq. (5) given by Azamathulla and Haque (2012), provided the local
scour depth with the largest computational errors (IOA = 0.077
and RMSE = 1.972) compared with the other traditional equations.
In the case of comparisons, performances of the traditional equa-
tions for testing stage have been presented in Fig. 8. From Fig. 8,
for observed values of d,/d between 0.6 and 1.6, Eq. (1) provided
the local scour depth with low level of under-prediction (or over-
prediction). This means that a fair amount of points have placed
out of +35% bound and additionally the rest of points have placed
in an allowable range of computational error for observed d,/d, =
0.2-6. As seen in Fig. 8, Eq. (3), given by Lim (1995), has pro-
duced the scour depth with tangible level of under-prediction for
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Fig. 8. Scatter plot of observed and predicted scour depth at culvert
outlets for testing of the empirical equations.

the observed d/d, = 0.8-1.6 and, for the observed d,/d, between
1.6 and 6.4, remarkable over-prediction was illustrated. Qualitative
performance of Eq. (4) showed that almost d;/d, values have
placed in the proposed error bound. Moreover, for the observed
d,/d, between 0.8 and 1.6, a few points were indicative of under
prediction and additionally this trend can be seen for the observed
di/dy = 1.6 and 6.4.

Through this study, in the terms of a comparison between pro-
posed models and empirical equations, results of Table 4 indicated
that application of Al models based on evolutionary computing for
a wide range of experimental datasets and various experimental
conditions had better performance than the traditional models.
As a major drawback, all empirical equations mentioned in this
investigation were proposed merely for a limited range of datasets.
This means that these equations did not have the capability to gen-
eralize the local scour depth at culvert outlets.

Parametric Study

In the first place, remarkable results of previous experimental in-
vestigations indicated that densimetric Froude number (Fry) was
considered as the most effective variable on the local scour depth
at culvert outlets (e.g., Lim 1995; Day et al. 2001). In this way,
effects of Fry on the local scour depth was investigated with respect
to performance of the proposed Al approaches. Fig. 9 illustrated
variations of dimensionless local scour depth versus densimetric
Froude number for all proposed Al techniques. From Fig. 9, it
can be inferred that d,/d, had a dramatic upward trend for Fry
between 0.05 and 20. For Frqy = 20-88.61, even though slope
of variations has decreased, general pattern given in Fig. 8 had
an upward trend. Overall, variations of d,/d, versus Fry, demon-
strated in Fig. 9, were in good agreement with those experimental
results reported in literature (Laushey et al. 1967; Bohan 1970;
Rajaratnam and Diebel 1981; Abt et al. 1984; Lim 1995).

Fisher Test for the Proposed Al Techniques

In this section, the analysis of variance (ANOVA) approach was
carried out to assess statistical reliability pertained to the Al tech-
niques used in this study. In this way, Fisher test was applied
to evaluate performance of Al models and empirical equations.
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Fig. 9. Variations of d/d, versus Fry.

Through the Fisher test, to assess the hypothesis asserting that value
of variation expressed by the regression model is higher than the
variation expressed by the averages, the F ratio was employed.
In the Fisher test, it is claimed that null hypothesis is accepted
if Fo> Foynp, Where & = significant level; k = number of
independent variables; p = k + 1; and n = size of the data sample.
For all the proposed Al techniques and traditional equations,
values of o, k, and n — p are fixed 0.05, 6, and 49, respectively.
From the Fisher test, F s .49 is 2.295 with respect to the F distri-
bution table. Additionally, F, is computed as (Hair et al. 1995)

 MSg

Fn =
7 MS,

(20)

where M Sy = regression mean square; and MSy = error mean
square. M Sk and MSg are computed as

R
Ms, = 358 (21)
P
SSE
Msy = SOE (22)
n—p

Moreover, SSR and SSE are the sum of squares due to regression
and the sum of squares of error, respectively, being computed as

NT
SSR = Z (ds/d()i(Predicled) - ds/d()i(Obxerved))z (23)

i=1

NT
SSE =Y (dy/doi(predicrea) — ds/ doi(onservea))’ (24
i=1

Statistical results of Fisher test have been given in Table 5. For
the d/d, prediction, with respect to Fy s 649, Fo values obtained
by EPR (F, = 1.386) and MT (F, = 1.737) models have accepted
hypothesis and consequently indicated accurate estimation of dy/d,
compared with GEP approach (F, = 2.352). As seen in Table 5, all
the empirical equations have rejected hypothesis of Fisher test. For
instance, Eq. (2) produced higher level of F; (5.505) in comparison
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Table 5. Analysis of variance for the scour depth prediction

State of
Model MSg MSg Fy hypothesis
EPR 1.438 1.037 1.386 Accept
MT 1.815 1.045 1.737 Accept
GEP 1.94 0.825 2.352 Reject
Eq. (1) 8.211 1.922 4272 Reject
Eq. 2) 176.44 32.05 5.505 Reject
Eq. (4) 11.867 3.417 3.473 Reject
Eq. (5) 31.76 7.727 4.11 Reject

with F( 05649 value and consequently Eq. (2), proposed by Abt
et al. (1984), is indicative of being lower capability in the d/d,
estimation.

Conclusions

In the current investigation, EPR, MT, and GEP techniques in terms
of mathematical expressions were developed to evaluate the local
scour depth at culvert outlets. To obtain the optimum relationships
on the basis of the proposed Al models, a dimensional analysis was
used to extract dimensionless parameters affecting on the scour
process at culvert outlets. Performance of the proposed techniques
for training and testing stages were assessed using some statistical

indices. Beside, empirical equations proposed by Abt et al. (1984),

Lim (1995), Liriano and Day (2001), and Azamathulla and Haque

(2012) were employed to compare with the EPR, GEP, and MT.

From this study, fundamental conclusions were understood as

follows:

* Quantitative results of statistical measures in the training
stage indicated that linear equations given by MT provided the
local scour depth with relatively accurate estimation (RMSE =
0.465 and AIC =750.95) in comparison with GEP (RMSE =
0.582 and AIC =839.81) and GEP (RMSE = 0.495 and
AIC = 776.71).

* In the testing stage, performance of Al models demonstrated
that EPR method predicted the scour depth with higher level
of precision (RMSE = 0.419 and AIC = 117.588) than those
obtained using GEP (RMSE = 0.487 and AIC = 132.264) and
MT (RMSE = 0.471 and AIC = 129.013) techniques. Overall,
it can be concluded that Eq. (15) extracted from EPR perfor-
mance was selected as the best model in terms of precision
rather than linear and non-linear equations given by GEP
and MT.

* Performance of empirical equations indicated that Eq. (3), pro-
posed by Lim (1995), provided the local scour depth with higher
amount of computational error (RMSE = 4.648 and AIC =
353.27) than other traditional equations. From qualitative com-
parisons among empirical equations, Eq. (3) had significant
over-prediction of the local scour depth for the observed d,/d,
between 1.6 and 6.4.

* Graphical variations of d;/d, versus Fry indicated that results of
the proposed Al models had a remarkable coincidence with
those reported in literature. To put it another way, an upward
trend demonstrated in Fig. 8 confirmed that the scour depth
at culvert outlets was a function fundamentally of densimetric
Froude number. This findings was in well agreement with Lim
(1995) investigations.

* In order to assign the best model with permissible level of
accuracy, performance of Fisher test indicated that EPR and
MT were capable to present relatively lower level of computa-
tional error rather than GEP model.
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