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Abstract: The estimation of scour downstream of a ski-jump bucket has remained inconclusive, despite analysis of numerous prototypes
as well as hydraulic model studies in the past. It is partly due to the complexity of the phenomenon involved and partly because of
limitations of the traditional analytical tool of statistical regression. This paper addresses the latter part and presents an alternative to the
regression in the form of neural networks. The depth of the scour hole developed along with its width and length is predicted using neural
network models. A network architecture complete with trained values of connection weight and bias and requiring input of grouped
parameters pertaining to discharge head, tail water channel depth, bucket radius, lip angle, and median sediment size is recommended in
order to predict the depth, the location of maximum scour, as well as the width of scour hole. The neural network predictions have been
compared with traditional statistical schemes. Although the common and simple feed forward back propagation network took a very long
time to train as compared to some advanced schemes, it was found to impart equally reliable training as the latter. Use of causative
variables in grouped forms was found to be more rewarding than that of their raw forms probably due to lesser scaling effect.
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Introduction

Provision of spillways in the structure of a dam enables disposal
of flood water in excess of reservoir capacity and also control of
water flow downstream. Out of several types of spillways the
overfall, ogee, and breast wall spillways are more commonly
used. Energy dissipation in such spillways may be in the form of
ski-jump jet, which throws the water jet away from the bucket lip
into the air, and then in the plunge pool formed at the point of
impact on the tail water �Fig. 1�. Because of impact of the high
velocity jet, scour takes place both upstream and downstream of
the point of impingement. The impact of the jet is transmitted
through cracks and fissures of the rock by way of hydrodynamic
pressure fluctuations causing hydraulic jacking action and also by
the transient pressure fluctuation caused by air locking. Due to
this the rock mass breaks into small pieces and consequently gets
swept away downstream of the spillway. The erosion continues up
to the point where the impinging jet energy is insufficient to exert
breaking pressure on the rock or where the secondary currents
produced are not strong enough to remove the rock blocks
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�Mason and Arumugam 1985�. Scouring also continues until an
equilibrium scour depth is reached, which corresponds to a situ-
ation where increased water depth in the scour hole precludes
exertion of bed shear stress that is sufficient to cause further bed
erosion or to a condition where the rate of bed erosion is balanced
by the rate of deposition of material brought back into the scour
hole by the return flow.

There are various hydraulic, morphologic, and geotechnical
factors governing the depth of scour. These include �referring to
Fig. 1� discharge intensity q, height of fall H1, bucket radius R,
bucket lip angle �, type of rock, degree of rock homogeneity,
time, and mode of operation of spillway. Various investigators
over a period of several decades in the past have given empirical
formulas based on laboratory as well as prototype observations in
order to predict the scour depth downstream of the ski-jump
bucket spillway. For example Veronese �1937�, Damle et al.
�1966�, Chee and Padiyar �1969�, Wu �1973�, Martins �1975�,
Taraimovich �1978�, Mason �1984�, Wang �1987�, Yildiz and
Ergün �1994�, Yildiz and Üzücek �1994�, and Lopardo et al.
�2002�. The Bureau of Indian Standards �1985� suggests use of
the Veronese formula given below for the estimation of ultimate
depth of scour below tail water level

ds = 1.90q0.54H1
0.225 �1�

An empirical formula, as above, involves idealization, ap-
proximation, and averaging of widely varying prototype condi-
tions and could predict scour depths which may be considerably
different from their actual values, e.g., in the case of Rana Pratap
Sagar Dam across the Chambal River in India. The actual deepest
scour was up to 24.7 m, which as per the Veronese formula
should have been 32.0 m �q=47.6 m3/s /m, H1=26.6 m, and
ds=32 m�. A similar study by Sen �1984� showed that the scour
below Kariba spillway, which is a part of the dam built across the
river Zambesi in Zimbabwe, was nearly double that of the one

predicted by the Veronese formula.
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Despite analyzing a wide range of reliable prototype as well as
model data the problem of scour prediction has remained incon-
clusive. It is felt that this is partly due to the complexity of the
phenomenon involved and partly because of the limitation of the
analytical tool commonly used by most of the earlier investiga-
tors, namely, statistical regression. Conventional statistical analy-
sis is now being replaced in many cases by the alternative ap-
proach of neural networks. Neural networks have advantages over
statistical models like their data-driven nature, model–free form
of predictions, and tolerance to data errors.

The objective of this study was to compile past observations
on depth and pattern of scour, supplement them with fresh obser-
vations if necessary, and reanalyze resulting data bases using the
technique of neural networks with a view towards seeing if better
predictions are possible. Not only depth but width and length of
the scour hole were also considered for prediction in this study in
view of their importance in the plunge pool design. Separate net-
work models were developed for prototype as well as for hydrau-
lic model data. Use of basic network architectures like feed for-
ward back propagation �FFBP� along with relatively advanced
configurations like radial basis functions �RBF� was made. The
neural network predictions have been compared with the tradi-
tional statistical schemes. The studies incorporated use of the neu-
ral network tool box in MATLAB �2003� as well as the software in
the package SNNS �1995�.

Data Collection

Past measurements of scour parameters made during numerous
laboratory investigations carried out at the Central Water and
Power Research Station �CWPRS�, Pune, India were first com-
piled for potential use in the current study. These studies were
conducted on various sectional as well as comprehensive models.
The sectional models were scaled to the range of 1:40–1:60,
whereas comprehensive models had their scales varying from
1:50 to 1:100. A look at these observations revealed that addi-
tional measurements were necessary to make them more compre-
hensive; especially with respect to pattern of scour including
width and distance of maximum scour depth from the spillway
bucket lip �length�. New hydraulic model studies were therefore
conducted on three different bucket designs. The three hydraulic
models simulated the dams across rivers Subarnarekha, Ranga-
nadi, and Parbati Rivers in India.

The first dam was 52 m high and 720 m long. Its spillway
consisted of 13 spans of 15 m wide each with crest at elevation
177 m. Radial gates of size 15 m�16 m regulated the flow over
this spillway. The design outflow flood was 26,150 m3/s. This
corresponded to a maximum water level at an elevation of
192.37 m. The ski-jump bucket with bucket radius of 25 m and
lip angle of 32.5° was provided at the toe for energy dissipation.

Fig. 1. Spillway and scour hole notations
The scour pattern downstream of the spillway, simulated by a

JOURN
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1:100 geometrically similar Froudian model, was obtained by re-
producing the river in erodible sand.

The second �Ranganadi River� dam was 60 m high, made up
of concrete with a rockfill portion on its right side. It had an
overflow spillway with seven spans of 10 m width and 12 m
height. The spillway catered to a maximum outflow flood of
12,500 m3/s. This corresponded to the maximum water level of
568.3 m and the full reservoir level of 567 m with the crest level
of the spillway at 544 m. The ski-jump bucket modeled by a 1:60
scale model served as an energy dissipator at the toe of the spill-
way. It had a bucket radius of 18 m with 35° as the lip angle.

The dam corresponding to the third spillway was 85 m high. It
was designed to pass a maximum discharge of 1,850 m3/s at the
full reservoir level of 2,198 m elevation. It had three spans, 6 m
wide and 9 m high, separated by 6 m thick piers, and fitted with
radial gates. An apron and a plunge pool along the downstream
side fronted the bucket, which had a bucket radius of 28 m with
the lip angle of 30°. This model based on Froude’s law had a
scale of 1:50. The downstream bed was made up of 2 mm diam-
eter cohesionless sand particles. The riverbanks in this portion
were assumed to be nonerodible and rigid.

The experiments were conducted for various discharges as
well as reservoir levels, with spillway gates fully and partially
open. The discharge on the hydraulic model was measured on the
standing wave flume or Rehbock weir. The accuracy of discharge
measurement was ±2%. The various depths such as tail water
depth, head over crest and other parameters were measured by
using a point gauge having a graduation of 0.1 mm. The depth of
scour was observed in a free formed plunge pool which was sub-
sequently filled with sand having d50 size of 2 mm. Observations
were made with four discharge passes, �25, 50, 75, 100% of the
maximum discharge� each with fully open as well as partially
open gates. Every run continued over a period of 3 h on the
model, which was found to be sufficient to reach the equilibrium
scour. Experience shows that the equilibrium scour depth would
be reached within this period, although the evolution of progres-
sive scour depth is a function of time. The scour pattern, as mea-
sured by the maximum scours depth as well as its location and
width was recorded for each run. Eight experimental runs �indi-
cating different discharges� were taken on each of the three mod-
els indicated above.

Dr. Masoud Ghodsian of Tarbiat Modarres University, Tehran,
Iran �E-mail: ghods@modares.ac.ir� also kindly provided addi-
tional scour data resulting from his previous work. In the end, 95
input–output pairs were compiled as shown in Table 1. The ranges
of various parameters so obtained are also given in Table 1.

Dimensional Analysis

Referring to Fig. 1 the equilibrium depth of scour �ds�, measured
from tail water surface, can be written as a function of discharge
per meter width or unit discharge of spillway �q�, total head �H1�,
radius of the bucket �R�, lip angle of the bucket ���, tail water
depth �dw�, mean sediment size �d50�, acceleration due to gravity
�g�, and densities of water and sediment �w and �s

ds = f�q,H1,R,�,dw,d50,g,�w,�s� �2�

In the present study the standard deviation of sediment bed ma-
terial has not been considered. The maximum width of the scour
hole �ws� as well as the distance of maximum scour depth from
the spillway bucket lip �length ls�, corresponding to the condition

of the maximum scour depth, can be written in a similar form as
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Table 1. Data Base Used

Sl.
number

Discharge
intensity

q
�m3/s /m�

Total
head

H1 �m�

Bucket
radius
R �m�

Bed
material

size
d50 �m�

Lip
angle

� �rad�

Tail
water
depth

dw �m�

Depth
of

scour
ds �m�

Location
of max
scour

lip ls �m�

Width of
scour

ws �m�
Data

source

1 0.1703 0.5083 0.400 0.004 0.472 0.1667 0.5500 1.1116 0.85 a

2 0.1792 1.4268 0.406 0.002 0.612 0.2300 0.2439 1.9512 0.85 a

3 0.0842 1.4268 0.609 0.002 0.698 0.1500 0.2246 2.0202 0.92 a

4 0.0634 1.1328 0.406 0.002 0.612 0.0300 0.1128 0.9807 1.63 a

5 0.0266 1.3659 0.610 0.002 0.698 0.1700 0.1259 0.9756 0.92 a

6 0.1616 1.7962 0.254 0.002 0.349 0.2337 0.3608 1.9055 1.50 a

7 0.0709 1.4146 0.610 0.002 0.698 0.1600 0.1922 1.7378 0.92 a

8 0.0204 0.3505 0.180 0.008 0.524 0.0286 0.1218 0.6970 0.60 a

9 0.0374 0.3328 0.140 0.008 0.524 0.0687 0.2360 0.7200 0.60 a

10 0.0093 1.0718 0.406 0.002 0.612 0.2340 0.0762 0.5742 1.63 a

11 0.1239 1.3659 0.406 0.002 0.612 0.1800 0.1677 1.4634 0.85 a

12 0.1446 1.3902 0.406 0.002 0.126 0.2650 0.2165 1.6463 0.85 a

13 0.0399 1.3902 0.610 0.002 0.698 0.1800 0.1485 1.4329 0.92 a

14 0.0471 0.3827 0.140 0.008 0.524 0.0286 0.3470 0.7500 0.60 a

15 0.0204 0.3104 0.180 0.008 0.524 0.0687 0.0889 0.5000 0.60 a

16 0.0204 0.2991 0.140 0.005 0.524 0.1000 0.1235 0.5300 0.65 a

17 0.0186 1.0822 0.406 0.002 0.612 0.2150 0.1037 0.7165 1.23 a

18 0.0285 0.3188 0.140 0.008 0.524 0.0687 0.1609 0.6300 0.60 a

19 0.1616 1.7962 0.254 0.002 0.780 0.2337 0.3608 2.0709 1.50 a

20 0.0471 0.3676 0.140 0.008 0.524 0.0437 0.3238 0.7000 0.60 a

21 0.0089 1.3415 0.610 0.002 0.698 0.1780 0.0512 0.5183 0.92 a

22 0.0725 1.3415 0.406 0.002 0.612 0.0900 0.0854 0.9146 0.85 a

23 0.0250 1.0922 0.406 0.002 0.612 0.2500 0.1098 0.8781 1.63 a

24 0.1616 1.7962 0.254 0.002 0.174 0.2337 0.2998 1.4482 1.50 a

25 0.1626 1.4146 0.406 0.002 0.612 0.2480 0.2317 1.8902 0.85 a

26 0.087 1.1532 0.406 0.002 0.612 0.0330 0.1169 1.0163 1.63 a

27 0.1616 1.7962 0.254 0.002 0.523 0.2337 0.2998 2.1439 1.50 a

28 0.0204 0.3354 0.100 0.008 0.524 0.0437 0.1360 0.4950 0.65 a

29 0.0398 1.3902 0.610 0.002 0.698 0.1800 0.1485 1.4329 0.92 a

30 0.0285 0.3589 0.250 0.008 0.567 0.0286 0.1642 0.6500 0.65 b

31 0.0435 1.1125 0.300 0.002 0.612 0.2480 0.1113 0.9502 1.63 b

32 0.0374 0.3328 0.250 0.003 0.567 0.0687 0.1772 0.7000 0.65 b

33 0.0374 0.3015 0.250 0.008 0.567 0.1000 0.1516 0.6700 0.65 b

34 0.0374 0.3015 0.250 0.002 0.567 0.1000 0.2135 0.6500 0.60 b

35 0.0471 0.3827 0.250 0.008 0.567 0.0286 0.3085 0.8200 0.65 b

36 0.0285 0.3188 0.250 0.008 0.567 0.0687 0.1432 0.6400 0.65 b

37 0.0204 0.2991 0.250 0.008 0.567 0.1000 0.0512 0.4550 0.65 b

38 0.0285 0.2875 0.300 0.002 0.612 0.1000 0.1570 0.5500 0.65 b

39 0.1532 1.0750 0.560 0.002 0.611 0.1460 0.3800 1.8400 2.06 b

40 0.0511 0.9650 0.560 0.002 0.611 0.1460 0.2900 1.3400 1.56 b

41 0.2042 1.1300 0.560 0.002 0.611 0.1460 0.4000 2.0400 1.65 b

42 0.1021 1.0300 0.560 0.002 0.611 0.1460 0.3400 1.8000 1.78 b

43 0.2042 1.4740 0.560 0.002 0.611 0.1460 0.4200 2.2400 2.14 b

44 0.1532 1.4850 0.560 0.002 0.611 0.1460 0.4000 2.1440 2.10 b

45 0.0511 1.5050 0.560 0.002 0.611 0.1460 0.2900 1.8400 1.80 b

46 0.1021 1.5000 0.560 0.002 0.611 0.1460 0.368 2.2400 2.00 b

47 0.0285 0.3589 0.180 0.008 0.524 0.0286 0.1725 0.6500 0.65 c

48 0.0374 0.3578 0.140 0.008 0.524 0.0437 0.2112 0.7100 0.65 c

49 0.0471 0.3113 0.140 0.008 0.524 0.1000 0.2459 0.6000 0.65 c

50 0.0285 0.2875 0.180 0.008 0.524 0.1000 0.1297 0.6300 0.65 c

51 0.0374 0.3578 0.200 0.008 0.524 0.0437 0.2032 0.7250 0.65 c

52 0.0471 0.3827 0.180 0.008 0.524 0.0286 0.3199 0.7800 0.65 c

53 0.0471 0.3676 0.180 0.008 0.524 0.0437 0.3036 0.7750 0.65 c

54 0.0204 0.3354 0.100 0.008 0.524 0.0437 0.136 0.4950 0.65 c
900 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / OCTOBER 2005

Downloaded 15 Jun 2010 to 134.84.97.131. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



Table 1. �Continued.�

Sl.
number

Discharge
intensity

q
�m3/s /m�

Total
head

H1 �m�

Bucket
radius
R �m�

Bed
material

size
d50 �m�

Lip
angle

� �rad�

Tail
water
depth

dw �m�

Depth
of

scour
ds �m�

Location
of max
scour

lip ls �m�

Width of
scour

ws �m�
Data

source

55 0.0285 0.2875 0.200 0.008 0.524 0.1000 0.1207 0.6200 0.65 c

56 0.0285 0.3438 0.180 0.003 0.524 0.0437 0.1607 0.6500 0.65 c

57 0.0471 0.3426 0.180 0.008 0.524 0.0687 0.2808 0.7800 0.65 c

58 0.0374 0.3328 0.180 0.008 0.524 0.0687 0.181 0.7000 0.65 c

59 0.0374 0.3578 0.180 0.008 0.524 0.0437 0.2172 0.7100 0.65 c

60 0.0471 0.3113 0.100 0.008 0.524 0.1000 0.2394 0.7000 0.65 c

61 0.0204 0.3505 0.200 0.008 0.524 0.0286 0.0816 0.5250 0.65 c

62 0.0471 0.3426 0.100 0.008 0.524 0.0687 0.3153 0.7200 0.65 c

63 0.0374 0.3015 0.140 0.008 0.524 0.1000 0.1848 0.7000 0.65 c

64 0.0285 0.3438 0.200 0.008 0.524 0.0437 0.1542 0.6500 0.65 c

65 0.0285 0.3589 0.140 0.008 0.524 0.0286 0.1986 0.5800 0.65 c

66 0.0204 0.3354 0.200 0.008 0.524 0.0437 0.0752 0.4700 0.65 c

67 0.0204 0.3104 0.100 0.008 0.524 0.0687 0.135 0.4500 0.65 c

68 0.0204 0.3505 0.140 0.008 0.524 0.0286 0.139 0.5000 0.65 c

69 0.0285 0.2875 0.140 0.008 0.524 0.1000 0.1405 0.6000 0.65 c

70 0.0471 0.3827 0.100 0.008 0.524 0.0286 0.3587 0.8150 0.65 c

71 0.0374 0.3729 0.200 0.008 0.524 0.0286 0.2263 0.7500 0.65 c

72 0.0285 0.3589 0.100 0.008 0.524 0.0286 0.2065 0.6100 0.65 c

73 0.0471 0.3426 0.200 0.008 0.524 0.0687 0.2693 0.7200 0.65 c

74 0.0471 0.3676 0.200 0.008 0.524 0.0437 0.292 0.7600 0.65 c

75 0.0204 0.3304 0.140 0.008 0.524 0.0687 0.1309 0.5000 0.65 c

76 0.0204 0.3354 0.180 0.008 0.524 0.0437 0.1068 0.6600 0.65 c

77 0.0285 0.3438 0.100 0.008 0.524 0.0437 0.1839 0.6050 0.65 c

78 0.0471 0.3426 0.140 0.008 0.524 0.0687 0.3091 0.6700 0.65 c

79 0.0471 0.3113 0.250 0.008 0.524 0.1000 0.243 0.6900 0.65 c

80 0.0204 0.3505 0.100 0.008 0.524 0.0286 0.1424 0.4900 0.65 c

81 0.0374 0.3328 0.100 0.008 0.524 0.0687 0.2426 0.6600 0.65 c

82 0.0471 0.3676 0.100 0.008 0.524 0.0437 0.3343 0.7300 0.65 c

83 0.0204 0.3104 0.200 0.008 0.524 0.0687 0.0643 0.5000 0.65 c

84 0.0285 0.3438 0.140 0.008 0.524 0.0437 0.1765 0.6500 0.65 c

85 0.0285 0.3188 0.180 0.008 0.524 0.0687 0.1526 0.6500 0.65 c

86 0.0204 0.2791 0.100 0.008 0.524 0.1000 0.1255 0.5000 0.65 c

87 0.0374 0.3729 0.140 0.008 0.524 0.0286 0.2685 0.7400 0.65 c

88 0.0471 0.3113 0.180 0.008 0.524 0.1000 0.2497 0.7650 0.65 c

89 0.0285 0.3188 0.100 0.003 0.524 0.0678 0.1706 0.5550 0.65 c

90 0.0204 0.3354 0.140 0.008 0.524 0.0437 0.1325 0.4200 0.65 c

91 0.0374 0.3015 0.180 0.008 0.524 0.1000 0.156 0.6850 0.65 c

92 0.0374 0.3578 0.100 0.008 0.524 0.0437 0.2755 0.7150 0.65 c

93 0.0374 0.3729 0.180 0.008 0.524 0.0286 0.2382 0.7200 0.65 c

94 0.0374 0.3729 0.100 0.008 0.524 0.0286 0.2915 0.7200 0.65 c

95 0.0204 0.2791 0.180 0.008 0.524 0.1000 0.0785 0.5500 0.65 c

Min. 0.0089 0.2791 0.100 0.002 0.174 0.0286 0.0512 0.4200 0.60
Max. 0.2042 1.7962 0.610 0.008 0.780 0.2650 0.55 2.2400 2.14
aNumerous research reports of hydraulic model studies conducted at Central Water and Power Research Station, India.
bNew model studies with respect to dams along river, Subernarekha, Ranganadi and Parbati.
cPersonal communication from Dr. Masoud Ghodsian of Tarbiat Modarres University, Tehran, Iran.
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ws = f�q,H1,R,�,dw,d50,g,�w,�s� �3�

Is = f�q,H1,R,�,dw,d50,g,�w,�s� �4�

Using the Buckingham � theorem, nondimensional equations in
functional forms can be obtained as below

ds

dw
= f� q

�qdw
3

,
H1

dw
,

R

dw
,
d50

dw
,

�s

�w
,�� �5�

ws

dw
= f� q

�gdw
3

,
H1

dw
,

R

dw
,
d50

dw
,

�s

�w
,�� �6�

Is

dw
= f� q

�gdw
3

,
H1

dw
,

R

dw
,
d50

dw
,

�s

�w
,�� �7�

The above functional relationships have been worked out in the
present study, in which the ratio of sediment density to water
density, �s /�w would be constant and can be eliminated from the
analysis.

Statistical Regression Models

The above dimensionless groups of parameters were related to
each other in the present study on the basis of nonlinear regres-
sion using 80% of the measurements selected randomly. This
yielded the following equations in order to estimate the maximum
scour depth, maximum scour width, and distance of maximum
scour location from the bucket lip, respectively:

ds

dw
= 6.914� q

�gdw
3 �0.694�H1

dw
�0.0815� R

dw
�−0.233�d50

dw
�0.196

���0.196

�8�

ls

dw
= 9.85� q

�gdw
3 �0.42�H1

dw
�0.28� R

dw
�0.043�d50

dw
�0.037

���0.34661

�9�

ws

dw
= 5.42� q

�gdw
3 �−0.015�H1

dw
�0.55107� R

dw
�0.1396�d50

dw
�0.242

���−0.16

�10�

Validation of the above Eqs. �8�–�10� was made with the help of
the remaining 20% of observations, which were not involved in
their derivation. Comparison between predicted and observed val-
ues of scour depth, length and width for the validation set is
qualitatively shown in Figs. 2–4, respectively. �Square symbols
are indicated at the end of legends.�

A quantitative comparison is shown in Table 2 referred to later
�last three rows� in terms of four error measures namely, �1� cor-
relation coefficient, r, which presents the degree of association
between predicted and true values; �2� the average error �� or ��
�AE�, which is a parameter commonly understood in engineering
applications, and which considers algebraic difference between
predicted and true values; �3� the average absolute deviation, d,
which does not even out positive or negative errors as in AE; and
�4� root mean square error �RMSE�, which is preferred in many
iterative prediction and optimization schemes. Expressions for

these measures are given in Appendix I.
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Referring to the last three rows of Table 2, although the per-
centage error and “RMSE” involved in the scour depth prediction
are small the correlation coefficient is low, and absolute deviation
is high, indicating that the prediction made using the statistical
technique may be viewed with skepticism. In addition the width
prediction was highly unsatisfactory. An alternative method of
data mining was therefore employed as described below.

Neural Network Models

As known widely by now neural networks provide a random
mapping in between an input and an output vector by mimicking
the biological cognition process of our brain. A typical network
would consist of three layers of neurons namely, input, hidden,
and output, with each neuron acting as an independent computa-
tional element. Neural networks derive their strengths from a

Fig. 2. Observed versus predicted relative scour depth

Fig. 3. Observed versus predicted relative scour length �from bucket
lip�
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“model-free” processing of data and a high degree of freedom
associated with their architecture. Details of concepts involved in
neural networks along with their applications in water resources
can be seen in the ASCE Task Committee �2000�, Dawson and
Wilby �2001� and Maier and Dandy �2000�. The text books of
Kosko �1992�, Wasserman �1993�, and Wu �1994� also give de-
tails of the network theory. Typical problems tackled by the net-
works in hydraulic engineering include: estimation of pier scour
and sediment transport in open channels �Trent et al. 1993a,b,
1999�; prediction of flow conditions when the interfacial mixing
in stratified estuaries commences �Grubert 1995�; prediction of
the scour depth at culvert outlets �Liriano and Day 2001�; and
prediction of sediment load concentration in rivers using neural
networks �Nagy et al. 2002�.

Before actual application the network has to be trained from
examples. Training comprises presentation of input and output
pairs to the network and fixing the values of connection weights,
bias or centers. The training may require many epochs �presenta-
tion of complete data sets once to the network�. Generally, the
network is presented with the input and output pairs untill the
training sum-square error reaches the error goal in order to give
the desired network performance.

In the present study the usual feed forward type of network
was considered. It was trained using both back propagation as
well as cascade correlation algorithms with a view to ensure that
proper training is imparted. Further, in order to see if advanced
training schemes provide better learning than the basic back
propagation, a radial basis function network was also used. Con-
cepts involved behind these training schemes are outlined in the
ASCE Task Committee �2000�. The resulting neural network
models are thus called FFBP, feed forward cascade correlation
�FFCC�, and RBF.

In order to map the causal relationship related to the scour two
separate input–output schemes �called Model 1 and Model 2�
were employed, where the first took the input of raw causal pa-
rameters while the second utilized their nondimensional group-
ings. This was done in order to see if use of the grouped variables
produced better results. Model 1 �Fig. 5� thus takes the input in
the form of causative factors, namely, q, H1, R, d50, dw, and � and
yields the output of corresponding scour hole depth, length, and

Fig. 4. Observed versus predicted relative scour width
width, while Model 2 �Fig. 6� employs the input of grouped as
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well as raw dimensionless variables namely, F0, H1 /dw, R /dw,
d50/dw, and � �F0 being the Froude number=q / �gdw

3 �1/2� and also
the output of relative scour depth, length, and width, i.e., ds /dw,
ls /dw, and ws /dw, respectively.

Use of the neural network toolbox contained within the MAT-
LAB as well as SNNS software packages was made. Similar to the
regression exercise described earlier, out of the total of 95 input–
output pairs, 80%, selected randomly, were used for training and
the remaining 20% were employed for testing or validation. As
dictated by the use of Gaussian function all patterns were normal-

Table 2. Comparison of Predicted and True Scour

Parameter r AE d RMSE

FFBP-Model 1

ds /dw 0.97 3.02 10.05 0.60

is /dw 0.97 −11.39 13.53 2.72

ws /dw 0.98 −9.50 11.36 2.74

FFBP-Model 2

ds /dw 0.97 −6.68 13.85 0.58

Is /dw 0.99 −2.87 3.72 0.72

ws /dw 0.99 −2.34 9.11 1.67

FFCC-Model 1

ds /dw 0.98 2.00 7.58 0.54

is /dw 0.97 1.96 8.13 1.84

ws /dw 0.97 −7.80 8.41 1.85

FFCC-Model 2

ds /dw 0.95 −16.74 19.11 0.84

is /dw 0.97 −5.29 10.13 1.74

ws /dw 0.96 −3.63 18.17 3.05

RBF-Model 1

ds /dw 0.98 5.474 9.59 0.45

ls /dw 0.95 6.319 12.18 2.43

ws /dw 0.92 −5.26 18.87 4.53

RBF-Model 2

ds /dw 0.97 2.39 15.13 0.66

ls /dw 0.94 8.80 11.92 2.72

ws /dw 0.97 7.66 12.98 2.62

Regression equations

ds /dw 0.84 −1.43 22.79 1.34

ls /dw 0.93 3.90 13.55 3.57

ws /dw 0.88 −19.57 20.15 5.61

Note: r=Corr. coeff; AE=average error; d=average absolute deviation;
RMSE=root mean square error; FFBP�feed forward back propagation;
FFCC�feed forward cascade correlation; RBF�radial basis functions;
ds=scour depth; dw=scour width; and ls=scour length.

Fig. 5. Model 1: use of raw variables
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ized within the range of �0.0, 1.0� before their use. Similarly all
weights and bias values were initialized to random numbers.
While the numbers of input and output nodes are fixed, the hidden
nodes in the case of FFBP were subjected to trials and the one
producing the most accurate results �in terms of the correlation
coefficient� was selected. The optimization of the training proce-
dure automatically fixes the hidden nodes in the case of the
FFCC. The trainings of these networks were stopped after reach-
ing the minimum mean square error of 0.0015 between the net-
work yield and the true output over all the training patterns. For
the RBF network various values of spread ��� between 0 and 1
were tried out and the one of 0.01 resulting in the best perfor-
mance on both training and testing data was selected.

The information on number of nodes, number of epochs �or,
passes through the training patterns� required to achieve the error
goal as well as the CPU time taken in the case of each training
scheme used �namely back propagation �BP�, cascade correlation
�CC�, and radial basis function �RBF�� is shown in Table 3 for
Models 1 and 2, respectively. As a matter of general information,
which is not of real significance in this study, it can be seen that
the cascade correlation algorithm, designed for efficient training,
trained the network with fewer epochs than the BP network and in
a very low amount of time, but the RBF network was trained in a
significantly less number of epochs and in a fraction of the time
compared with BP and CC algorithms, indicating its training
efficiency.

After completion of training as above the networks were tested
for unseen input. Figs. 2–4, as well as Table 2 show the degree of
match between the network-yielded and the “true” scour depth,

Table 3. Network Architecture

Algorithm
Network

configuration Epochs
CPU time

�s�

I H O

Model 1

BP 6 10 3 25,000 900

CC 6 82 3 1,200 300

RBF 6 19 3 19 3

Model 2

BP 5 10 3 15,000 600

CC 5 20 3 700 200

RBF 5 13 3 13 2

Note: I, H, O indicate number of input, hidden, and output
nodes, respectively; BP=back propagation; CC=cascade correlation; and

Fig. 6. Model 2: use of grouped variables
RBF=radial basis function.
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width, and length, respectively, in each scheme of training for
both Models 1 and 2.

It may be seen from Figs. 2–4, as well as Table 2 that when the
scour depth alone is considered, AE and d do exhibit considerable
variation across various networks, while r and RMSE do not.
There is no single method, which produces the highest r and the
lowest AE, d, and RMSE values simultaneously. Hence the FFCC
Model 1 would probably be the most acceptable model showing
highest correlation �r=0.97� and lowest �AE=2.0%, and
d=7.59% and second lowest RMSE=0.54�.

When it comes to length of the scour hole considerable varia-
tion in error measures across various networks may be noticed. In
this case the FFBP Model 2 comes out as the most acceptable
network in terms of accuracy as it involves the highest
r �=0.99� and second lowest AE �=2.9% �, and lowest d �=3.73�
and RMSE �=0.72� values.

Examination of Table 2 for the case of width of the scour hole
suggests that there is a large variation in magnitudes of error
measures across the neural networks and that the most suitable
network is again FFBP Model 2, which has the highest r of 0.99
and lowest AE, second lowest d, and lowest RMSE values of
−2.34%, 9.11%, and 1.67, respectively.

The above observations thus show that when it comes to over-
all accuracy of predicting depth, width, and length, all error cri-
teria viewed together point out that the simple FF network trained
using the common BP algorithm is either as good as or even
slightly better than more sophisticated networks. It also shows
that use of grouped variables as input �Model 2� may be more
beneficial than that of the raw variables �Model 1�, provided an
appropriate training scheme is chosen, where perhaps grouping of
variables had resulted in evening out their scale effects.

In the end therefore the network configuration �FFBP,
Model 2� shown in Fig. 7 along with corresponding weight and
bias matrix given in Table 6 is recommended for general use in
order to predict the depth, the location of the maximum scour
from the bucket tip, as well as the width of the scour hole. The
procedure for its use is also indicated in Appendix II. A package
named SKI-SCOUR is prepared for general use by anyone, to get
predicted values of scour depth, length, and geometry from an
input of q, H1, R, d50, dw, and � parameters. �This could be made

Fig. 7. Feed forward back propagation model 2: use of dimensionless
parameters
available by an e-mail request to the first writer.�
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e k.
Significance of Input Parameters

An attempt was made to ascertain the importance or influence of
different input parameters of q, H1, d50, R, dw, and � on the scour
dimensions �namely ds, ls, and ws�. Various input combinations as
in Tables 4 and 5 were considered by adding input variables one
by one and their influence on testing the data sets was evaluated
in terms of the RMSE and r criteria. Table 4 shows the outcome
in terms of raw variables while Table 5 shows the same for their
groupings. These tables give the impression that bucket geometry
�R and �� has only marginal influence on resulting scour com-
pared to other site conditions. However considering the limita-
tions and uncertainties in the data a full-fledged network involv-
ing all inputs variables would be desirable.

An alternative to the above analysis is to work out the “relative
importance” of input quantities by multiplying connection
weights between different neuron layers �Garson 1991; Goh
1994�. This was done for raw variables input as well as for that of

Table 6. Connection Weights and Biases �Refer to Fig. 7�

Weights �w�

w1,6=3.49 w2,6=−0.08 w3,6=0.16

w1,7=3.49 w2,7=−0.09 w3,7=0.22

w1,8=2.63 w2,8=0.86 w3,8=0.24

w1,9=2.19 w2,9=0.33 w3,9=0.19

w1,10=2.93 w2,10=−1.70 w3,10=−1.29

w1,11=1.95 w2,11=−0.08 w3,11=0.29

w1,12=3.08 w2,12=−0.04 w3,12=0.42

w1,13=2.96 w2,13=−1.84 w3,13=−1.32

w1,14=1.96 w2,14=−0.09 w3,14=0.29

w1,15=3.76 w2,15=−3.04 w3,15=−1.34

w6,16=1.57 w7,16=1.55 w8,16=−0.11

w11,16=0.43 w12,16=1.11 w13,16=2.79

w6,17=0.87 w7,17=0.83 w8,17=3.05

w11,17=2.06 w12,17=1.28 w13,17=0.24

w6,18=1.53 w7,18=1.71 w8,18=2.52

w11,18=0.81 w12,18=1.55 w13,18=−0.65

Note: wi,j =connection weight between nodes i and j; and 	k=bias in nod

Table 4. Sensitivity Analysis of Raw Variables �Case: Feed Forward
Back Propagation 1�

Input variables

Root mean square error �RMSE�/
r �correlation coefficient�

ds ls ws

q ,H1 RMSE=0.54 RMSE=0.35 RMSE=0.37

r=0.86 r=0.96 r=0.89

q ,H1, d50 RMSE=0.34 RMSE=0.34 RMSE=0.30

r=0.93 r=0.97 r=0.91

q ,H1, d50, dw RMSE=0.33 RMSE=0.36 RMSE=0.21

r=0.9 r=0.99 r=0.97

q ,H1, d50, R, � RMSE=0.42 RMSE=0.34 RMSE=0.68

r=0.91 r=0.99 r=0.85

q ,H1, d50, R, dw, � RMSE=0.32 RMSE=0.35 RMSE=0.20

r=0.96 r=0.99 r=0.98

Note: ds=scour depth; ls=scour length; ws=scour width; q=unit
discharge; H1=head; d50=median diameter; R=bucket radius; and

�=lip angle.
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the grouped variables. This scheme of assessment again indicates
a smaller influence of bucket radius, �but not lip angle �� and
head H1 on the scour hole formation.

In view of the variability in the outcome resulting from appli-
cation of different analytical schemes and in light of the fact that
the bucket radius and the lip angle are most easily available with
the designer it is felt that the network which requires all input
quantities may be followed for generality.

Parametric Study

In order to know if the trained network is able to reproduce the
physical phenomenon of scour satisfactorilya parametric study
was made. Keeping all input parameters but one as constants �at
their average magnitudes� at a time, the variation of the scour
depth with respect to different causative variables was drawn.
Fig. 8 shows such a variation of scour hole depth ds with q, H1, R,
d50, dw, and �, respectively. From this figure it is clear that higher
discharge results in a deepening of the scour; the corresponding
depth of scour is very high in the beginning and much lower after

Biases

w4,6=1.90 w5,6=0.26 	6=−0.45

w4,7=2.09 w5,7=0.18 	7=−0.47

w4,8=−1.55 w5,8=0.93 	8=−2.91

w4,9=−0.28 w5,9=1.08 	9=−2.23

w4,10=−0.77 w5,10=0.13 	10=−1.19

w4,11=0.58 w5,11=0.98 	11=−1.36

w4,12=1.97 w5,12=0.55 	12=−0.53

w4,13=−0.69 w5,13=0.0001 	13=−1.18

w4,14=0.61 w5,14=0.98 	14=−1.33

w4,15=0.42 w5,15=−1.09 	15=−0.75

w9,16=0.02 w10,16=2.70 	16=−7.18

w14,16=0.45 w15,16=3.67 	17=−5.79

w9,17=2.68 w10,17=0.45 	18=−5.92

w14,17=2.04 w15,17=−1.63

w9,18=1.16 w10,18=−0.52

w14,18=0.81 w15,18=−1.92

Table 5. Sensitivity Analysis of Grouped Variables �Case: Feed Forward
Back Propagation 2�

Input variables

Root mean square error �RMSE�/
r �correlation coefficient�

ds /dw ls /dw ws /dw

F0, H1 /dw RMSE=1.78 RMSE=1.80 RMSE=4.25

r=0.89 r=0.97 r=0.91

F0, H1 /dw, d50/dw RMSE=0.43 RMSE=0.66 RMSE=1.4

r=0.98 r=0.99 r=0.99

F0, H1 /dw,
d50/dw, R /dw

RMSE=0.53 RMSE=0.85 RMSE=1.36

r=0.98 r=0.99 r=0.99

F0, H1 /dw,
d50/dw, R /dw, �

RMSE=0.57 RMSE=0.72 RMSE=1.67

r=0.97 r=0.99 r=0.99

Note: ds=scour depth; dw=water depth; ls=scour length; ws=scour
width; F0=Froud number; H1=head; d50=median diameter; R=bucket

radius; and �=lip angle.

AL OF HYDRAULIC ENGINEERING © ASCE / OCTOBER 2005 / 905

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



around the middle of the discharge range. Increase in scour depth
with the available head could be noted from Fig. 8. The rate of
increase is nonuniform, indicating underlying nonlinearity. As ex-
pected, higher values of the bucket radius, the sediment size, and
the tail water depth produce smaller scour as seen in Fig. 8. In-
crease in the lip angle may result in higher depth of scour due to
increasing height of the jet while total momentum remains almost
the same. It may thus be seen that the trained network produced
physically consistent output.

Network Based on Prototype Data

Another study to estimate the scour based on past prototype mea-
surements rather than against the above-described case of scale-
model observations was also conducted. A survey of available
publications reporting such observations was done. This indicated
that only three types of information, namely, scour depth below
tail water level t, discharge intensity q, and head drop H1 are
uniformly reported in all references. Further, considering that
many traditional prediction formulas, including those due to
Veronese �1937�, Damle et al. �1966�, Wu �1973�, Martins �1975�,
and INCYTH-LHA �1982� are based only on q and H1 a neural
network with two input nodes �for q and H1� and one output node

Fig. 8. Variation of ds with q, H1, R, d50, dw, and �

Fig. 9. Typical neural network architecture
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�for the scour depth t� only was developed �see Fig. 9�. In total
there were 91 input–output pairs formed out of the published data.
The training and testing of these data were done in a manner
similar to the analysis of the hydraulic model observations re-
ported in all previous sections. Details of this work are available
in Azmathullah �2004�. From this study it was found that similar
to the experimental data considered in this paper the FFBP net-
work provided the most satisfactory training and that the neural
network predictions of ds, ls, and ws based on the information of
q and H1 were much better than those obtained by the common
formulas of Veronese �1937�, Wu �1973�, Martins �1975�, and
INCYTH-LHA �1982�, as well as by the newly fitted regression
equation �ds=1.42q0.44H1

0.3�. The scour depths arrived at using the
above four formulas �with respect to the validation data set� were
compared with corresponding “true” or measured values.
Fig. 10 shows the result in scatter plots of predictions against
observations.

However the best network predictions in this case corre-
sponded to r=0.92, AE=−8.9%, and d=13.27 as against their
values of 0.97, −6.7%, and 7.6, respectively in the present hy-
draulic model data case, indicating that if more accurate predic-
tions are desired, use of parameters of R, d50, dw, and � would be
necessary in addition to those of q and H1.

Conclusions

An alternative approach to the traditional empirical formulas used
to obtain scour downstream of the ski-jump bucket spillway is
presented in this study. It is based on the approach of neural
networks and it involved analysis of an extensive data base in
order to obtain the depth, the location of maximum scour from the
bucket lip, as well as the width of scour hole out of the given
parameters of q, H1, R, d50, dw, and �.

The network predictions were generally more satisfactory than
those given by traditional regression equations because of low
errors and high correlation coefficients.

Although the common and simple feed forward back propaga-

Fig. 10. Performance of neural networks, traditional scour
predictors, and regression model
tion network took a very large time to train compared to some
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advanced schemes, it imparted equally reliable training as the
latter.

Incorporation of causative variables in grouped form was
found to be more rewarding than that of their raw or individual
state.

The input of bucket radius, lip angle, sediment size, and tail
water depth was found to be necessary in addition to that of unit
discharge and height of fall �as practiced in traditional formulas�,
if accurate predictions are desired.

Further research based on the type of rock bed, classified as
per rock quality designation, and rock mass rating by using arti-
ficial neural network �ANN� and adaptive network based infer-
ence system �ANFIS� is underway.
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Appendix I. Error Measures Used

Correlation Coefficient

r =
� xy

�� x2 � y2
�11�

where x=X−X�; y=Y −Y�; X=observed scour values; X�=mean
of X; Y =predicted scour values; and Y�=mean of Y.

Average Error

AE =
� X − Y

X
� 100

n
�12�

where n=total number of pairs of X and Y values.

Average Absolute Deviation

d =
� ��Y − X��

� X
� 100 �13�

Root Mean Square Error

RMSE = �� �X − Y�2

n
	1/2

�14�

Appendix II: Weight and Bias Matrix for Feed
Forward Back Propagation „Model 2…

Output of the network can be obtained as follows:
1. Sum up weighted inputs, i.e.

Nodj = �
i=1

NIN

�Wijxi� + 	 j �15�

where Nodj =summation for the jth hidden node;

NIN=total number of input nodes; Wij =connection weight
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ith input and jth hidden node; xi=normalized input at the ith
input node; and 	 j =bias value at the jth hidden node.

2. Transform the weighted input

Outj = 1/�1 + e−nodj� �16�

where Outj =output from the jth hidden node.
3. Sum up the hidden node outputs

Nodk = �
j=1

NHN

�WjkOutj� + 	k �17�

where Nodk=summation for the kth output node;
NHN=total number of hidden nodes; Wik=connection
weight between the jth hidden and kth output node; and
	k=bias at the kth output node.

4. Transform the weighted sum

Outk = 1/�1 + e−nodj� �18�

where Outk=output at the kth output node. Referring to
Fig. 7 let nodes 1,2,3,4, and 5=top to bottom input nodes,
respectively; nodes 6,7,8…. and 15=hidden nodes from top
to bottom, respectively; and nodes 16,17, and 18=top to bot-
tom output nodes, respectively. The weight and bias matrix
of the trained network is given in Table 6.

Notation

The following symbols are used in this paper:
d � average absolute deviation;

ds � maximum depth of scour below tail water level
�m�;

dw � tail water depth �m�;
d50 � mean sediment size �m�;
F0 � Froude number;
g � acceleration due to gravity �m2/s�;

H1 � head between upper �reservoir� water level and
tail water level �m�;

ls � distance of maximum scour depth from spillway
bucket lip �m�;

q � water discharge per unit width �m3/s /m�;
R � radius of bucket �m�;

RMSE � root mean square error;
r � correlation coefficient;

ws � maximum width of scour hole �m�;
�s � sediment density;
�w � density of water; and
� � lip angle of bucket �radians�.
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