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Abstract: The processes involved in the local scour at culverts are so complex and that makes it difficult to establish a general empirical
model to provide accurate estimation for scour. This paper describes the use of adaptive neurofuzzy inference system �ANFIS� to estimate
the scour depth at culvert outlets. The data sets of laboratory measurements were compiled from published literature and used to train the
ANFIS network. The developed network was validated by using the observations that were not involved in training. The performance of
ANFIS was found to be more effective �R2=0.94� when compared with the results of regression equations and artificial neural networks
modeling in predicting the scour depth at culvert outlets �R2=0.78�. Further work is required to collect field data of scour at culvert outlets
to train the genetic programming approach and validate its usefulness.
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Introduction

An essential feature in the hydraulic design of drainage-crossing
hydraulic structures such as culverts or storm drains is determin-
ing the design capacity of flow capacity �Lim 1995�. Accurate
prediction of the dimensions of scour downstream from hydraulic
structures is required to ensure foundations are properly designed
and prevent damage to the structure as a result of undermining
�Liriano and Day 2001�. The estimation of scour characteristics at
culvert outlets �Fig. 1� continues to be a concern for hydraulic
engineers.

A number of empirical formulas have been developed in the
past to estimate equilibrium scour depth at culvert outlets, includ-
ing Opie �1967�, Rajaratnam and Berry �1977�, Rajaratnam
�1981�, Ruff et al. �1982�, Rajaratnam and MacDougall �1983�,
Blaisdell and Anderson �1988�, Abida and Townsend �1991�, Lim
�1995�, and Chiew and Lim �1996�. These traditional scour pre-
diction equations �Table 1�, although offering the engineer some
guidance on the likely magnitude of maximum scour depth, are
applicable only to a limited range of field conditions. A model for
the prediction of scour downstream from culverts that is generally
applicable to all circumstances is not currently available. How-
ever, the main deficiency of these formulas is that the empirical
equations do not model actual scour processes. Most commonly,
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regression relations are used to predict culvert outlet scour; how-
ever, regression analysis can have large uncertainties, which in-
clude major drawbacks pertaining to idealization of complex
scour process, approximation and averaging widely varying pro-
totype conditions. Thus, the estimated scour depths using regres-
sion equations can have large uncertainties, which can contribute
to costly culvert failures.

Predictive approaches such as artificial neural networks
�ANN� �Azmathullah et al. 2005� and adaptive neurofuzzy infer-
ence systems �ANFIS� �Azamathulla et al. 2008� have been re-
cently shown to yield effective estimates of scour around
hydraulic structures. ANNs have been reported to provide reason-
ably good solutions for hydraulic-engineering problems, particu-
larly for cases of highly nonlinear and complex relationship
among the input-output pairs in corresponding data �Guven and
Gunal 2008a; Azamathulla et al. 2010; Azamathulla and Ghani
2010�.

The objective of this study is to develop an improved predic-
tive model for estimating scour depth using ANFIS. The perfor-
mance of the proposed ANFIS model is compared with a standard
radial basis function �RBF� neural network and conventional
regression-based equations �Lim 1995; Chiew and Lim 1996; Abt
et al. 1984�.

Analysis of Local Scour at Culvert Outlets

The variables influencing the equilibrium scour depth �ds� at cul-
vert outlets are listed as below �Liriano and Day 2001�

ds = f��,�0,u0,d0,H,W,W0,g,�s�,d50,�g,Ks� �1�

where ds=maximum depth of scour; �=density of water; �0

=dynamic viscosity of water; u0=mean velocity at the outlet; d0

=pipe diameter for circular outlets and the outlet height for non-
circular outlets; H=depth of water in the downstream receiving
channel �tailwater depth�; W=width of the receiving channel;
W0=width of the outlet; g=acceleration due to gravity; �s
=density of the sediment bed material; d50=median sediment
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size; Ks=shape factor of a culvert; and �g=geometric standard
deviation of the sediment bed material and describes the gradation
of sediments downstream from the culvert. Assuming that the
viscous effect is not important and that the bed material consists
of sand and gravel with constant �s, a dimensional analysis
Eq. �1� can be reduced to a set of five nondimensional parameters,
it gives

ds

d0
= f�F0,

H

d0
,
W

d0
,
W0

d0
,
d50

d0
,�g,Ks� �2�

where F0=u0 / ��S−1�gd50�0.5=densimetric Froude number and
S=�s /�=specific gravity of the sediment. Experimental data were
compiled from seven papers such as Bohan �1970�, Ruff et al.
�1982�, Ali and Lim �1986�, Abida and Townsend �1991�,
Lim �1995�, Ade and Rajaratnam �1998�, and Aderibigbe and
Rajaratnam �1998�. The compiled data set consists of 202 data
sets.

During last two decades, researchers have noticed that the use
of soft computing techniques �ANN, ANFIS, genetic program-
ming �GP�, etc.� as alternative to conventional statistical methods
based on controlled laboratory or field data yielded significantly
better results for spillway and bridge pier scour. ANN and ANFIS
are the most widely used branches of soft computing in hydraulic
engineering. Within the larger field of hydraulics, several re-
searchers have dealt with the scour around and downstream of
hydraulic structures using ANN �Azmathullah et al. 2005, 2008;
Guven and Gunal 2008a,b�. ANFIS, which is an extension of
ANN with hybrid networks �neurofuzzy�, recently has attracted
the attention of researchers in prediction of hydraulic characteris-
tics. This study presents ANN and ANFIS as alternative tool in
the prediction of scour depth at culvert.

Development of the Neural Network Model

ANN provides a random mapping between an input and an output
vector, and typically consists of three layers of neurons namely,

Table 1. Empirical Formulas to Estimate the Scour Depth at Culvert
Outlets

Writer Equation

Lim �1995� dse /do=0.45 F0

Chiew and Lim �1996� dse /do=0.21 F0

Abt et al. �1984� dse /d0=−3.67�F0�0.57�d50�0.4��g�−0.4

Fig. 1. Typical center-line bed profile below circular pipe outlet at eq
of Civil Engineers and S.Y. Lim�
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input, hidden and output, with each neuron acting as an indepen-
dent computational element. Neural networks derive their
strengths from the high degree-of-freedom associated with their
architecture. Prior to application, the network is trained �cali-
brated� to observed data sets. This feeds the network with input
and output pairs and determines the values of connection weights
in the hidden layer, bias or centers �Fig. 2 as example�.

The output y of a RBF network corresponding to input x is
computed by the equation

y = f�x� = �
i=1

n

wiRi�x� + � �3�

where wi=connection weight between the hidden neuron and out-
put neuron; �=bias; and Ri�x�=RBFs given by �Fig. 2�

Ri�x� = ��x − ci� �4�

having a maximum value at the origin that decays rapidly as its
argument tends to infinity. It approaches zero as the Euclidean
distance increases between an input vector and the center in-
creases. The general class of RBFs is Gaussian

Ri = − exp�− �
i=1

n
�xi − ci�2

2�ij
2 � �5�

where ci
T= �ci1 ,ci2 ,ci3 , . . . ,cin�=center of the receptive field and

�ij =width of the Gaussian function which indicates the selectivity
of the neuron. The major task of RBF network design is to deter-
mine center c. The simplest and easiest way may be to choose
the centers randomly from the training set. The second approach
is to use the k-means technique of clustering input training set
into groups and choose the center of each group as the center.
Also, c can be treated as a network parameter along with wi and
adjusted through error-correction training. After the center is de-
termined, the connection weights wi between the hidden layer and

ium scour condition �Lim 1995, with permission from the Institution

Fig. 2. RBF neural network architecture
uilibr
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output layer can be determined simply through ordinary back-
propagation training.

A neural network toolbox contained within the MATLAB
�2009� package was used in this study. The usual feed-forward
type of network was trained using a RBF. Out of the total of 202
input-output pairs, about 75% of data sets �151 sets� selected
randomly and were used for training, whereas the remaining 25%
of data sets �51 sets� were employed for testing �model valida-
tion�. Table 2 shows the variables and their ranges of the com-
plied data used in this study. As dictated by the use of a Gaussian
function, all patterns were normalized within the range of 0.0, 1.0
before their use. The RBF network �7 inputs, 32 hidden neurons,
and 1 output as in Eq. �2�� was trained using various values of
spread ��ij� between 0 and 1. A spread constant � for the radial
basis layer, and returns a network with weights and biases such
that the outputs are exactly for given targets. The value of 0.01
was selected as it yielded the best performance for the training
data.

ANFIS Networks

The ANFIS, first introduced by Jang �1993�, is a universal ap-
proximator and, as such, is capable of approximating any real
continuous function on a compact set to any degree of accuracy
�Jang 1993�.Thus, in parameter estimation, where the given data
sets are such that the system associates measurable system vari-
ables with an internal system parameter, a functional mapping is
constructed by ANFIS that approximates the process of estima-
tion of the internal system parameter.

The ANFIS is functionally equivalent to fuzzy inference sys-
tems �Jang 1993�. Below, the hybrid learning algorithm �Jang
1993� which combines gradient descent and the least-squares
method, is introduced, and the issue of how the equivalent fuzzy
inference system can be rapidly calibrated and adapted with this
algorithm is discussed.

Most of the previous works that address ANN applications to
water resources have included the feed forward type of the archi-
tecture, where there are no backward connections, which are
trained using the error back-propagation scheme or the feed for-
ward back-propagation �FFBP� network configuration. Draw-
backs of ANN include that it needs substantial training time and
the difficulties in detecting hidden neurons in hidden layer for
better predictions. Therefore, the present study applies a new soft
computing technique ANFIS.

The input in ANFIS is first converted into fuzzy membership

Table 2. Range of Data Used

Variable Range of data

Outlet shape Circular and box

Culvert shape Rectangular

Circular

Square

Outlet diameter d0 �m� 0.0254–0.146

Sediment size d50 /d0 0.016–0.28

Tailwater depth H /d0 0.5–25

Exit velocity u0 �m/s� 0.747–11.176

F0 1.04–88.61

W /d0 1.0–86.0
functions, which are combined together. After following an aver-
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aging process to obtain the output membership functions, the de-
sired output is finally achieved.

Development of ANFIS Model

The ANFIS network �Fig. 3� works as follows: Let x and y be
the two typical input values fed at the two input nodes, which
then transforms those values to the membership functions �say
bell-shaped� and give the output as follows: �Note in general,
w=output from a node; �=membership function; and Mi and
Ni=fuzzy sets associated with nodes x, y in Eq. �6�.�

�Mi�x� =
1

1 + 	�x − c1�/a1	2b1
�6�

where a1, b1, and c1=changeable basis parameters. Similar com-
putations are carried out for the input of y to obtain �Ni�y�. The
membership functions are then multiplied in the second layer, e.g.

wi = �Mi�x� . �Ni�y� �i = 1,2� �7�

Such products or firing strengths are then averaged

wi = wi/� wi �i = 1,2� �8�

Nodes of the fourth layer use the above ratio as a weighting
factor. Furthermore, using fuzzy if-then rules produces the fol-
lowing output: �An example of an if-then rule is: If x is M1 and
y is N1, then f1= p1x+q1y+r1�

wifi = wi�pix + qiy + ri� �9�

where p, q, and r=changeable consequent parameters. The final
network output f is produced by the node of the fifth layer as a
summation of all incoming signals, which is exemplified in
the Eq. �9�. The parameters like p, q, and r employed in Eq. �9�,
for each rule of the ANFIS models, are given in Table 3. The
corresponding rules of the developed ANFIS model are listed in
Table 4.

A two-step process is used for faster calibrating and to adjust
the network parameters to the above ANFIS network. In the first
step, the premise parameters are kept fixed, and the information is

Fig. 3. ANFIS network architecture
propagated forward in the network to Layer 4. In Layer 4, a
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least-squares estimator identifies the important parameters. In the
second step, the backward pass, the chosen parameters are held
fixed while the error is propagated. The basis parameters are then
modified using gradient descent. Apart from the calibration pat-
terns, the only user-specified information required is the number
of membership functions for each input. The description of the
learning algorithm is given in Jang and Sun �1995�.

The ANFIS model was developed using the same input vari-
ables as with an ANN-RBF model as in Eq. �2�. The gravitational
acceleration and the slope of energy line are constant in all ex-
periments. The seven nondimensional �grouped� parameters of
Eq. �2�, and normalized equilibrium scour depth �ds /d0� are the
input and output patterns, respectively. It is obvious that nondi-
mensional �grouped� parameters should be used all the time
in analyzing results in the engineering community �Azmathullah
et al. 2005�. The following scenarios are considered in building
the ANFIS model �Fig. 4� with the inputs and output shown in the
network. A computer program �MATLAB code� was developed to
perform the analysis, and can be obtained from the corresponding
writer.

Training and Testing Results of ANFIS Modeling

The performance of ANFIS model in training and testing sets is
validated in terms of the common statistical measures; R2 �coef-
ficient of determination�, RMSE, MAE, and � �average absolute
deviation�. The functional set and operational parameters used in
the ANFIS modeling in this study is listed in Table 3.

A quantitative comparison is shown in Table 5 referred in

Table 3. Parameters of the ANFIS Models

Rule parameters ANFIS

Rule 1 	1.236

	0.03245

0.3489

	0.04467

158

14.95�10−6

	25.82

Rule 2 2570

0.0635

	2550

98.43

−4.034�10+4

−2.583�10−6

2.058�10+4

Table 4. Rules for ANFIS Models �Refer to Fig. 4�

Rules ANFIS

1 1. If �F0 is F0mf1� and �H /d0 is H /d0mf1�
and �W /d0 is W /d0mf1� and �d50 /d0 is d50 /d0mf1�
and �Ks is Ksmf1� and ��g is �gmf1�
then �ds /d0 is ds /d0mf1� �1�

2 2. If �F0 is F0mf1� and �H /d0 is H /d0mf1�
and �W0 /d0 is W0 /d0mf1� and �d50 /d0 is d50 /d0mf1�
and �Ks is Ksmf1� and ��g is �gmf1�
then �ds /d0 is ds /d0mf1� �2�
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terms of the four error measures. The performance of all models
was compared using above four error measures and expressions
for these measures are given below

R2 = 1 −

�
i=1

N

�oi − ti�2

�
i=1

N

�oi − ōi�2

�10�

RMSE =

�

i=1

N

�oi − ti�2

N
�11�

MAE =
1

N�i=1

N
	oi − ti	 �12�

and � =
� 	�oi − ti�	

� oi

� 100 �13�

where ti denotes the target values of equilibrium scour depth
�cm�, while oi and ōi denote the observed and averaged observed
values of equilibrium scour depth �cm�, respectively, and N
=number of data points namely, �1� coefficient of determination,
R2, which presents the degree of association between predicted
and true values; �2� MAE �+ or −�, which is a parameter com-
monly understood in engineering applications and which consid-
ers algebraic difference between predicted and true values; �3�
RMSE, which is preferred in many iterative prediction and opti-

Table 5. Comparison of the ANFIS and ANN-RBF Models

Error
measure

Training Validation

ANN-RBF ANFIS ANN-RBF ANFIS

R2 0.842 0.978 0.783 0.941

RMSE 0.0046 0.0795 0.0978 0.0046

MAE 1.945 1.516 2.87 1.426

� 11.21 5.23 15.34 9.90

Fig. 4. ANFIS—model �inputs and output�
ASCE / FEBRUARY 2011



mization schemes; and �4� the average absolute deviation, �,
which does not even out positive or negative errors as in MAE.
First, an attempt was made to assess the significance or influence
of each input parameter on estimated ds /d0 values. Table 6 pro-
vides a summary of the ANFIS models, with one of the indepen-
dent parameters removed in each case, and deleting any
independent parameter from the input set yielded larger RMSE
and lower R2 values. These five independent parameters have
influence on ds /d0 and so the functional relationship given in
Eq. �2� is used for the ANFIS modeling in this study. The ANFIS
approach resulted in highly nonlinear relationship between ds /d0

and the input parameters with high accuracy and relatively low
error. The testing performance of the proposed ANFIS model re-
vealed a good predictive capacity to yield acceptable error mea-
sures with R2=0.941, RMSE=0.046, MAE=1.426%, and �=9.9.

Results and Discussion

In this study, grouped variables �nondimensional data set� of input
data were explored to assess their influence on the scour-depth
modeling �Table 6�. The ANFIS model was developed and tested
for predicting culvert scour depth. Dimensional analysis was used
to determine parameter for scour at culvert outlet. A nondimen-
sional parameter in the Eq. �2� sensitivity analysis shows that
dimensionless shape factor parameter �Ks� and d50 /d0 have,
respectively, the most and the least effect on normalized scour
depth. To assess the performance of the ANFIS model, observed
equilibrium scour depth values were plotted against the predic-
ted ones. Fig. 5 illustrates the results with the performance in-

Table 6. Sensitivity Analysis for Independent Parameters for the Testing
Set

Model RMSE MAE R2

ds / d0 = f �F0 , H / d0 , W / d0 , W0 / d0 , d50 / d0 ,�g ,Ks� 0.046 0.32 0.941

ds / d0 = f �F0 , H / d0 , W / d0 , d50 / d0 ,�g ,Ks� 0.065 0.45 0.82

ds / d0 = f �F0 , H / d0 , W0 / d0 , d50 / d0Ks ,�g� 0.075 0.53 0.84

ds / d0 = f �F0 , H / d0 , W / d0 d50 / d0 ,�g� 0.058 0.76 0.74

ds / d0 = f �F0 , W / d0 , d50 / d0 ,Ks ,�g� 0.134 0.87 0.82

Fig. 5. Observed versus predicted scour depth—validation �testing�
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dices between predicted and observed data for the validating
�testing� data sets. The result of the grouped variables data shows
a high coefficient of determination �R2=0.98� and also RMSE
�=0.0795�, and in the case of ANN-RBF has �R2=0.827,
RMSE=0.0988� in both training and validation periods but this
variation is low compared with R2 variation �Table 6�. The results
of Liriano and Day �2001� also are interesting but did not produce
any implicit information for general use in designs and conven-
tional regression-based equations �Lim 1995, Chiew and Lim
1996; Abt et al. 1984� estimates either under- or overpredict scour
depth, only Lim‘s equation gives R2=0.53 and Chiew and Lim’s
formula produces R2=0.45 for testing data set. This study is use-
ful for applications of culvert scour for field conditions because
the ANFIS model was developed with wide range of data, which
could be deemed as the closest to field conditions, particularly
helping to identify parameters that most likely define scour pro-
cesses and explain scour variability, and ANFIS model is shown
to agree well with actual measurements.

Conclusions

The application of the soft computing approaches ANN-RBF and
ANFIS to predict the local scour depth at culvert outlets was
described. The ANFIS and ANN-RBF models were developed to
predict the values of relative scour depth �ds /d0� from laboratory
measurements compiled from the literature. ANFIS-based ap-
proach was presented to estimate depth of scour at culvert outlet
from optimum data sets. The application of the ANFIS in this
study is another important contribution to scour-depth estimation
methodologies for culverts. The present study indicates that em-
ploying the original data set yielded a network that can predict
measured depth scour at culvert outlets more accurately than tra-
ditional regression analysis based formulas �Lim 1995; Chiew
and Lim 1996; Abt et al. 1984� that under- and overpredict scour
depths. The overall performance of ANFIS model is superior to
the ANN model when compared to error based criteria. Further
work is required to collect field data of scour at culvert outlets to
train the GP approach and validate its usefulness.
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Notation

The following symbols are used in this paper:
ds 
 maximum scour depth;
d0 
 pipe diameter for circular outlets and the outlet

height for noncircular outlets;
d50 
 particle mean diameter;

g 
 gravitational acceleration;
H 
 depth of water in the downstream receiving channel

�tailwater depth�;
Ks 
 shape of culvert;

2
R 
 coefficient of determination;
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u0 
 mean velocity at the outlet;
W 
 width of the receiving channel;

W0 
 width of the outlet;
� 
 spread;
� 
 average absolute deviation;
� 
 fluid dynamic viscosity;

�0 
 dynamic viscosity of water;
� 
 fluid density;

�s� 
 buoyant sediment density; and
�g 
 geometric standard deviation.
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