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Abstract

In this paper, we present topological black holes of third order Lovelock gravity in the presence

of cosmological constant and nonlinear electromagnetic Born-Infeld field. Depending on the met-

ric parameters, these solutions may be interpreted as black hole solutions with inner and outer

event horizons, an extreme black hole or naked singularity. We investigate the thermodynamics of

asymptotically flat solutions and show that the thermodynamic and conserved quantities of these

black holes satisfy the first law of thermodynamic. We also endow the Ricci flat solutions with a

global rotation and calculate the finite action and conserved quantities of these class of solutions

by using the counterterm method. We compute the entropy through the use of the Gibbs-Duhem

relation and find that the entropy obeys the area law. We obtain a Smarr-type formula for the

mass as a function of the entropy, the angular momenta, and the charge, and compute temperature,

angular velocities, and electric potential and show that these thermodynamic quantities coincide

with their values which are computed through the use of geometry. Finally, we perform a stability

analysis for this class of solutions in both the canonical and the grand-canonical ensemble and show

that the presence of a nonlinear electromagnetic field and higher curvature terms has no effect on

the stability of the black branes, and they are stable in the whole phase space.
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I. INTRODUCTION

Over the last few years, several extra-dimensional models have been introduced in an

attempt to deal with the hierarchy problem. These models can lead to rather unique and

spectacular signatures at Terascale colliders such as the LHC and ILC. In higher dimensions,

it is known that the Einstein-Hilbert (EH) Lagrangian, R, can only be regarded as the first

order term in an effective action, so one may on general grounds expect that as one probes

energies approaching the fundamental scale, significant deviations from EH expectations are

likely to appear. This motivates one to consider the more general class of gravitational

action:

IG =
1

16π

∫
dn+1x

√−gF(R,RµνR
µν , RµνρσR

µνρσ).

The presence of higher curvature terms can also be seen in the renormalization of quantum

field theory in curved spacetime [1], or in the construction of low energy effective action of

string theory [2]. Among the higher curvature gravity theories, the so-called Lovelock gravity

is quite special, whose Lagrangian consist of the dimensionally extended Euler densities.

This Lagrangian is obtained by Lovelock as he tried to calculate the most general tensor

that satisfies properties of Einstein’s tensor in higher dimensions [3]. Since the Lovelock

tensor contains derivatives of metrics of order not higher than two, the quantization of

linearized Lovelock theory is free of ghosts [4]. Thus, it is natural to study the effects of

higher curvature terms on the properties and thermodynamics of black holes.

Accepting the nonlinear terms of the invariants constructed by Riemann tensor on the

gravity side of the action, it seems natural to add the nonlinear terms in the matter action

too. Thus, in the presence of an electromagnetic field, it is worthwhile to apply the action

of Born-Infeld [5] instead of the Maxwell action. In this paper, we generalize static and

rotating black hole solutions of third order Lovelock gravity in the presence of Maxwell

field [6, 7] to the case of these solutions in the presence of nonlinear electromagnetic fields.

Indeed, it is interesting to explore new black hole solutions in higher curvature gravity

and investigate which properties of black holes are peculiar to Einstein gravity, and which

are robust features of all generally covariant theories of gravity. The first aim to relate

the nonlinear electrodynamics and gravity has been done by Hoffmann [8]. He obtained a

solution of the Einstein equations for a pointlike Born-Infeld charge, which is devoid of the

divergence of the metric at the origin that characterizes the Reissner-Nordström solution.
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However, a conical singularity remained there, as it was later objected by Einstein and

Rosen. The spherically symmetric solutions in Einstein-Born-Infeld gravity with or without

a cosmological constant have been considered by many authors [9, 10], while the rotating

solutions of this theory is investigated in [11]. Also, these kinds of solutions in the presence

of a dilaton field have been introduced in [12]. The static black hole solutions of Gauss-

Bonnet-Born-Infeld gravity have been constructed in Ref. [13], and the rotating solution of

this theory has been considered in [14].

The out line of our paper is as follows. We present the topological black holes of third

order Lovelock gravity in the presence of Born-Infeld field in Sec. II. In Sec. III, we calculate

the thermodynamic quantities of asymptotically flat solutions and investigate the first law

of thermodynamics. In Sec. IV we introduce the rotating solutions with flat horizon and

compute the thermodynamic and conserved quantities of them. We also perform a stability

analysis of the solutions both in canonical and grand canonical ensemble. We finish our

paper with some concluding remarks.

II. TOPOLOGICAL BLACK HOLES

The action of third order Lovelock gravity in the presence of nonlinear Born-Infeld elec-

tromagnetic field is

IG =
1

16π

∫
dn+1x

√
−g (−2Λ + L1 + α2L2 + α3L3 + L(F )) , (1)

where Λ is the cosmological constant, α2 and α3 are the second and third order Lovelock

coefficients, L1 = R is just the Einstein-Hilbert Lagrangian, L2 = RµνγδR
µνγδ−4RµνR

µν+R2

is the Gauss-Bonnet Lagrangian,

L3 = 2RµνσκRσκρτR
ρτ

µν + 8Rµν
σρR

σκ
ντR

ρτ
µκ + 24RµνσκRσκνρR

ρ
µ

+3RRµνσκRσκµν + 24RµνσκRσµRκν + 16RµνRνσR
σ
µ − 12RRµνRµν +R3 (2)

is the third order Lovelock Lagrangian, and L(F ) is the Born-Infeld Lagrangian given as

L(F ) = 4β2

(
1−

√
1 +

F 2

2β2

)
. (3)

In the limit β → ∞, L(F ) reduces to the standard Maxwell form L(F ) = −F 2, where

Fµν = ∂µAν − ∂νAµ. Varying the action (1) with respect to the metric tensor gµν and
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electromagnetic vector field Aµ the equations of gravitation and electromagnetic fields are

obtained as:

G(1)
µν + Λgµν + α2G

(2)
µν + α3G

(3)
µν =

1

2
gµνL(F ) +

2FµλF
λ
ν√

1 + F 2

2β2

, (4)

∂µ




√−gF µν

√
1 + F 2

2β2


 = 0, (5)

where G
(1)
µν is the Einstein tensor, and G

(2)
µν and G

(3)
µν are the second and third order Lovelock

tensors given as [15]:

G(2)
µν = 2(RµσκτR

σκτ
ν − 2RµρνσR

ρσ − 2RµσR
σ
ν +RRµν)−

1

2
L2gµν , (6)

G(3)
µν = −3(4RτρσκRσκλρR

λ
ντµ − 8Rτρ

λσR
σκ

τµR
λ
νρκ + 2R τσκ

ν RσκλρR
λρ

τµ

−RτρσκRσκτρRνµ + 8Rτ
νσρR

σκ
τµR

ρ
κ + 8Rσ

ντκR
τρ

σµR
κ
ρ

+4R τσκ
ν RσκµρR

ρ
τ − 4R τσκ

ν RσκτρR
ρ
µ + 4RτρσκRσκτµRνρ + 2RR κτρ

ν Rτρκµ

+8Rτ
νµρR

ρ
σR

σ
τ − 8Rσ

ντρR
τ
σR

ρ
µ − 8Rτρ

σµR
σ
τRνρ − 4RRτ

νµρR
ρ
τ

+4RτρRρτRνµ − 8Rτ
νRτρR

ρ
µ + 4RRνρR

ρ
µ −R2Rνµ)−

1

2
L3gµν . (7)

Here we want to obtain the (n+ 1)-dimensional static solutions of Eqs. (4) and (5). We

assume that the metric has the following form:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2, (8)

where

dΩ2 =





dθ21 +
n−1∑
i=2

i−1∏
j=1

sin2 θjdθ
2
i k = 1

dθ21 + sinh2 θ1dθ
2
2 + sinh2 θ1

n−1∑
i=3

i−1∏
j=2

sin2 θjdθ
2
i k = −1

n−1∑
i=1

dφ2
i k = 0





represents the line element of an (n− 1)-dimensional hypersurface with constant curvature

(n− 1)(n− 2)k and volume Vn−1.

Using Eq. (5), one can show that the vector potential can be written as

Aµ = −
√

(n− 1)

2n− 4

q

rn−2
̥(η)δ0µ, (9)
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where q is an integration constant which is related to the charge parameter and

η =
(n− 1)(n− 2)q2

2β2r2n−2
.

In Eq. (9) and throughout the paper, we use the following abbreviation for the hypergeo-

metric function

2F1

([
1

2
,
n− 2

2n− 2

]
,

[
3n− 4

2n− 2

]
,−z

)
= ̥(z). (10)

The hypergeometric function ̥(η)→ 1 as η → 0 (β → ∞) and therefore Aµ of Eq. (9)

reduces to the gauge potential of Maxwell field. One may show that the metric function

f(r) = k +
r2

α

(
1− g(r)1/3

)
, (11)

g(r) = 1 +
3αm

rn
− 12αβ2

n(n− 1)

[
1−

√
1 + η − Λ

2β2
+

(n− 1)η

(n− 2)
̥(η)

]
(12)

satisfies the field equations (4) in the special case

α2 =
α

(n− 2)(n− 3)
,

α3 =
α2

72(n−2
4 )

,

where m is the mass parameter. Solutions of Gauss-Bonnet gravity are not real in the whole

range 0 ≤ r < ∞ and one needs a transformation to make them real [14, 16]. But, here the

metric function f(r) is real in the whole range 0 ≤ r < ∞.

In order to consider the asymptotic behavior of the solution, we put m = q = 0 where

the metric function reduces to

f(r) = k +
r2

α

[
1−

(
1 +

6Λα

n(n− 1)

)1/3
]
. (13)

Equation (13) shows that the asymptotic behavior of the solution is AdS or dS provided

Λ < 0 or Λ > 0. The case of asymptotic flat solutions (Λ = 0) is permitted only for k = 1.

As in the case of black holes of Gauss-Bonnet-Born-Infeld gravity [13, 14], the above

metric given by Eqs. (8), (11) and (12) has an essential timelike singularity at r = 0.

Seeking possible black hole solutions, we turn to looking for the existence of horizons. The

event horizon(s), if there exists any, is (are) located at the root(s) of grr = f(r) = 0.

Denoting the largest real root of f(r) by r+, we consider first the case that f(r) has only

one real root. In this case f(r) is minimum at r+ and therefore f ′(r+) = 0. That is,

(n− 1)k
[
3(n− 2)r4+ + 3(n− 4)kαr2+ + (n− 6)k2α2

]
+ 12r6+β

2
(
1−

√
1 + η+

)
− 6Λr6+ = 0.

(14)
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One can find the extremal value of mass, mext, in terms of parameters of metric function

by finding r+ from Eq. (14) and inserting it into equation f(r+) = 0. Then, the metric of

Eqs. (8), (11) and (12) presents a black hole solution with inner and outer event horizons

provided m > mext, an extreme black hole for m = mext [temperature is zero since it is

proportional to f ′(r+)] and a naked singularity otherwise. It is a matter of calculation to

show that mext for k = 0 becomes

mext =
2(n− 1)q2ext

n

(
Λ(Λ− 4β2)

2(n− 1)(n− 2)β2q2ext

)(n−2)/(2n−2)

̥(
Λ(Λ− 4β2)

4β4
). (15)

The Hawking temperature of the black holes can be easily obtained by requiring the ab-

sence of conical singularity at the horizon in the Euclidean sector of the black hole solutions.

One obtains

T+ =
f ′(r+)

4π
=

(n− 1)k
[
3(n− 2)r4+ + 3(n− 4)kαr2+ + (n− 6)k2α2

]
+ 12r6+β

2 (1−√
1 + η+)− 6Λr6+

12π(n− 1)r+(r2+ + kα)2
.

(16)

It is worthwhile to note that T+ is zero for m = mext.

III. THERMODYNAMICS OF ASYMPTOTICALLY FLAT BLACK HOLES FOR

k = 1

In this section, we consider the thermodynamics of spherically symmetric black holes

which are asymptotically flat. This is due to the fact that only the entropy of asymptotically

black holes of Lovelock gravity is well known [17]. Usually entropy of black holes satisfies

the so-called area law of entropy which states that the black hole entropy equals one-quarter

of the horizon area [18]. One of the surprising and impressive features of this area law of

entropy is its universality. It applies to all kinds of black holes and black strings of Einstein

gravity [19]. However, in higher derivative gravity the area law of entropy is not satisfied

in general [20]. It is known that the entropy of asymptotically flat black holes of Lovelock

gravity is [17]

S =
1

4

[(n−2)/2]∑

k=1

kαk

∫
dn−1x

√
g̃L̃k−1, (17)

where the integration is done on the (n−1)-dimensional spacelike hypersurface of the Killing

horizon, g̃µν is the induced metric on it, g̃ is the determinant of g̃µν , and L̃k is the kth order
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Lovelock Lagrangian of g̃µν . Thus, the entropy for asymptotically flat black holes in third

order Lovelock gravity is

S =
1

4

∫
dn−1x

√
g̃
(
1 + 2α2R̃ + 3α3(R̃µνσκR̃

µνσκ − 4R̃µνR̃
µν + R̃2)

)
, (18)

where R̃µνρσ and R̃µν are Riemann and Ricci tensors and R̃ is the Ricci scalar for the induced

metric g̃ab on the (n− 1)-dimensional horizon. It is a matter of calculation to show that the

entropy of black holes is

S =
Vn−1

4

(
r4+ +

2(n− 1)

n− 3
αr2+ +

n− 1

n− 5
α2

)
rn−5
+ . (19)

The charge of the black hole can be found by calculating the flux of the electric field at

infinity, yielding

Q =
Vn−1

4π

√
(n− 1)(n− 2)

2
q. (20)

The electric potential Φ, measured at infinity with respect to the horizon, is defined by

Φ = Aµχ
µ |r→∞ − Aµχ

µ|r=r+
, (21)

where χ = ∂/∂t is the null generator of the horizon. One finds

Φ =

√
(n− 1)

2(n− 2)

q

rn−2
+

̥(η+). (22)

The ADM (Arnowitt-Deser-Misner) mass of black hole can be obtained by using the behavior

of the metric at large r. It is easy to show that the mass of the black hole is

M =
Vn−1

16π
(n− 1)m. (23)

We now investigate the first law of thermodynamics. Using the expression for the entropy,

the charge, and the mass given in Eqs. (19), (20) and (23), and the fact that f(r+) = 0, one

obtains

M(S,Q) =
(n− 1)

16π

{
2rn+

n(n− 1)

(
2β2

[
1−

√
1 + ℑ+

(n− 1)ℑ
(n− 2)

̥(ℑ)
]
− Λ

)

−rn−2
+ + αrn−4

+ − α2rn−6
+

3

}
, (24)

where

ℑ =
16π2Q2

β2r2n−2
+

.
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In Eq. (24) r+ is the real root of Eq. (19) which is a function of S. One may then regard the

parameters S and Q as a complete set of extensive parameters for the mass M(S,Q) and

define the intensive parameters conjugate to them. These quantities are the temperature

and the electric potential

T =

(
∂M

∂S

)

Q

, Φ =

(
∂M

∂Q

)

S

. (25)

Computing ∂M/∂r+ and ∂S/∂r+ and using the chain rule, it is easy to show that the

intensive quantities calculated by Eq. (25) coincide with Eqs. (16) and (22), respectively.

Thus, the thermodynamic quantities calculated in Eqs. (16) and (22) satisfy the first law of

thermodynamics,

dM = TdS + ΦdQ. (26)

IV. THERMODYNAMICS OF ASYMPTOTICALLY ADS ROTATING BLACK

BRANES WITH FLAT HORIZON

Now, we want to endow our spacetime solution (8) for k = 0 with a global rotation.

These kinds of rotating solutions in Einstein gravity have been introduced in [21]. In order

to add angular momentum to the spacetime, we perform the following rotation boost in the

t− φi planes

t 7→ Ξt− aiφi, φi 7→ Ξφi −
ai
l2
t (27)

for i = 1...[n/2], where [x] is the integer part of x. The maximum number of rotation

parameters is due to the fact that the rotation group in n + 1 dimensions is SO(n) and

therefore the number of independent rotation parameters is [n/2]. Thus the metric of an

asymptotically AdS rotating solution with p ≤ [n/2] rotation parameters for flat horizon

can be written as

ds2 = −f(r)

(
Ξdt−

p∑

i=1

aidφi

)2

+
r2

l4

p∑

i=1

(
aidt− Ξl2dφi

)2

+
dr2

f(r)
− r2

l2

p∑

i<j

(aidφj − ajdφi)
2 + r2

n−1∑

i=p+1

dφi, (28)

where Ξ =
√

1 +
∑k

i a
2
i /l

2. Using Eq. (5), one can show that the vector potential can be

written as

Aµ = −
√

(n− 1)

2n− 4

q

rn−2
̥(η)

(
Ξδ0µ − δiµai

)
(no sum on i). (29)
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One can obtain the temperature and angular momentum of the event horizon by analytic

continuation of the metric. One obtains

T+=
f ′(r+)

4πΞ
=

r+
2(n− 1)πΞ

(
2β2(1−

√
1 + η+)− Λ

)
, (30)

Ωi =
ai
Ξl2

, (31)

where η+ = η(r = r+). Next, we calculate the electric charge and potential of the solutions.

The electric charge per unit volume Vn−1 can be found by calculating the flux of the electric

field at infinity, yielding

Q =
1

4π

√
(n− 1)(n− 2)

2
Ξq. (32)

Using Eq. (21) and the fact that χ = ∂t +
∑k

iΩi∂φi
is the null generator of the horizon, the

electric potential Φ is obtained as

Φ =

√
(n− 1)

2(n− 2)

q

Ξrn−2
+

̥(η+). (33)

A. Conserved quantities of the solutions

Here, we calculate the action and conserved quantities of the black brane solutions. In

general the action and conserved quantities of the spacetime are divergent when evaluated on

the solutions. A systematic method of dealing with this divergence for asymptotically AdS

solutions of Einstein gravity is through the use of the counterterms method inspired by the

anti-de Sitter conformal field theory (AdS/CFT) correspondence [22]. For asymptotically

AdS solutions of Lovelock gravity with flat boundary, R̂abcd(γ) = 0, the finite action is [7, 23]

I = IG +
1

8π

∫

∂M

dnx
√
−γ {L1b + α2L2b + α3L3b}+

1

8π

∫

∂M

dnx
√
−γ

(
n− 1

L

)
, (34)

where L is

L =
15l2

√
α(1− λ)

5l2 + 9α− l2λ2 − 4l2λ
, (35)

λ = (1− 3α

l2
)1/3. (36)

One may note that L reduces to l as α goes to zero. The first integral in Eq. (34) is a

boundary term which is chosen such that the variational principle is well defined. In this

integral L1b = K, L2b = 2(J − 2Ĝ
(1)
ab K

ab) and

L3b = 3(P − 2Ĝ
(2)
ab K

ab − 12R̂abJ
ab + 2R̂J − 4KR̂abcdK

acKbd − 8R̂abcdK
acKb

eK
ed),

9



where γµν and K are induced metric and trace of extrinsic curvature of boundary, Ĝ
(1)
ab and

Ĝ
(2)
ab are the n-dimensional Einstein and second order Lovelock tensors (Eq. (6)) of the

metric γab and J and P are the trace of

Jab =
1

3
(2KKacK

c
b +KcdK

cdKab − 2KacK
cdKdb −K2Kab), (37)

and

Pab =
1

5
{[K4 − 6K2KcdKcd + 8KKcdK

d
eK

ec − 6KcdK
deKefK

fc + 3(KcdK
cd)2]Kab

−(4K3 − 12KKedK
ed + 8KdeK

e
fK

fd)KacK
c
b − 24KKacK

cdKdeK
e
b

+(12K2 − 12KefK
ef)KacK

cdKdb + 24KacK
cdKdeK

efKbf}. (38)

Using Eqs. (1) and (34), the finite action per unit volume Vn−1 can be calculated as

I = − 1

T+

{
rn+

16πl2
− rn+β

2(
√
1 + η+ − 1)

4n(n− 1)π
+

(n− 1)q2

8nπr
(n−2)
+

̥(η+)

}
. (39)

Using the Brown-York method [24], the finite energy-momentum tensor is

T ab =
1

8π
{(Kab −Kγab) + 2α2(3J

ab − Jγab) + 3α3(5P
ab − Pγab) +

n− 1

L
γab }, (40)

and the conserved quantities associated with the Killing vectors ∂/∂t and ∂/∂φi are

M =
1

16π
m
(
nΞ2 − 1

)
, (41)

Ji =
1

16π
nΞmai, (42)

which are the mass and angular momentum of the solution.

Now using Gibbs-Duhem relation

S =
1

T
(M −QΦ−

k∑

i=1

ΩiJi)− I, (43)

and Eqs. (33), (39) and (41)-(42) one obtains

S =
Ξ

4
rn−1
+ (44)

for the entropy per unit volume Vn−1. This shows that the entropy obeys the area law for

our case where the horizon is flat.
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B. Stability of the solutions

Calculating all the thermodynamic and conserved quantities of the black brane solutions,

we now check the first law of thermodynamics for our solutions with flat horizon. We obtain

the mass as a function of the extensive quantities S, J, and Q. Using the expression for

charge mass, angular momenta and entropy given in Eqs. (32), (41), (42), (44) and the fact

that f(r+) = 0, one can obtain a Smarr-type formula as

M(S,J, Q) =
(nZ − 1)J

nl
√

Z(Z − 1)
, (45)

where J = |J| =
√∑k

i J
2
i and Z = Ξ2 is the positive real root of the following equation:

Z1/2(n−1)

√
Z − 1

=
[4l2β2 (1−√

1 + η+) + n(n− 1)]Sn/(n−1)

(n− 1)πlJ
+

4πlQ2̥(π
2Q2

β2S2 )

(n− 2)J(4S)(n−2)/(n−1)
. (46)

One may then regard the parameters S, Ji’s, and Q as a complete set of extensive parameters

for the mass M(S,J, Q) and define the intensive parameters conjugate to them. These

quantities are the temperature, the angular velocities, and the electric potential

T =

(
∂M

∂S

)

J,Q

, Ωi =

(
∂M

∂Ji

)

S,Q

, Φ =

(
∂M

∂Q

)

S,J

. (47)

Straightforward calculations show that the intensive quantities calculated by Eq. (47) coin-

cide with Eqs. (30), (31) and (33). Thus, these quantities satisfy the first law of thermody-

namics:

dM = TdS +

k∑

i=1

ΩidJi + ΦdQ.

Finally, we investigate the local stability of charged rotating black brane solutions of

third order Lovelock gravity in the presence of nonlinear electrodynamic Born-Infeld field in

the canonical and grand canonical ensembles. In the canonical ensemble, the positivity of

the heat capacity CJ,Q = T+/(∂
2M/∂S2)J,Q and therefore the positivity of (∂2M/∂S2)J,Q is

sufficient to ensure the local stability. Using the fact that

2F1

([
3

2
,
3n− 4

2n− 2

]
,

[
5n− 6

2n− 2

]
,−z

)
=

(3n− 4)

(n− 1)z

{
̥(

π2Q2

β2S2
)− 1√

1 + z

}
,

it is easy to show that

∂2M

∂S2
=

2[(n− 1)(n− 2)2q2 − Λr
(2n−2)
+

√
1 + η+ + 2β2r

(2n−2)
+ (

√
1 + η+ − 1)]

(n− 1)2πΞ2r
(3n−4)
+

√
1 + η+

−

8(Ξ2 − 1)Λ
(
−r2n−2

+

√
1 + η+(

n(n−1)
2

+ 2β2l2) + (n− 1)(n− 2)βl2q2 + 2β3l2r
(2n−2)
+

)2

πml2β2Ξ2(n− 1)4(4Ξ2 + 1)(1 + η+)r(4n−6)
.(48)
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Both of the two terms of Eq. (48) are positive, and therefore the condition for thermal

equilibrium in the canonical ensemble is satisfied.

In the grand canonical ensemble, the positivity of the determinant of the Hessian matrix of

M(S,Q,J) with respect to its extensive variables Xi, H
M
XiXj

= (∂2M/∂Xi∂Xj), is sufficient

to ensure the local stability. It is a matter of calculation to show that the determinant of

HM
S,Q,J is:

∣∣HM
SJQ

∣∣ = 64π (2(n− 2)β2η+ − Λ
√
1 + η+ + 2β2 (

√
1 + η+ − 1))

(n− 2)(n− 1)3ml2Ξ6r
2(n−2)
+ [(n− 2)Ξ2 + 1]

√
1 + η+

̥(η+) +
8(n− 1)Ξ

r+
T+.

(49)

Equation (49) shows that the determinant of the Hessian matrix is positive, and therefore

the solution is stable in the grand canonical ensemble too. The stability analysis given

here shows that the higher curvature and nonlinear Maxwell terms in the action have no

effect on the stability of black holes with flat horizon, and these kinds of black holes are

thermodynamically stable as in the case of toroidal black holes of Einstein-Maxwell gravity

[25]. This phase behavior is also commensurate with the fact that there is no Hawking-Page

transition for a black object whose horizon is diffeomorphic to Rp and therefore the system

is always in the high temperature phase [26].

V. CLOSING REMARKS

In this paper we considered both the nonlinear scalar terms constructing from the cur-

vature tensor and electromagnetic field tensor in gravitational action, which are on similar

footing with regard to the string corrections on gravity and electrodynamic sides. We pre-

sented static topological black hole solutions of third order Lovelock gravity in the presence

of Born-Infeld gravity, which are asymptotically AdS for negative cosmological constant, dS

for positive Λ. For the case of solutions with positive curvature horizon (k = 1), one can

also have asymptotically flat solutions provided Λ = 0. The topological solutions obtained

in this paper may be interpreted as black holes with two inner and outer event horizons for

m > mext , extreme black holes for m = mext or naked singularity otherwise. We found that

these solutions reduce to the solutions of Einstein-Born-Infeld gravity as the Lovelock coef-

ficients vanish, and reduce to the solutions of third order Lovelock gravity in the presence

of Maxwell field as β goes to infinity [6]. We consider thermodynamics of asymptotically

12



flat solutions and found that the first law of thermodynamics is satisfied by the conserved

and thermodynamic quantities of the black hole. We also consider the rotating solution

with flat horizon and computed the action and conserved quantities of it through the use

of counterterm method. We found that the entropy obeys the area law for black branes

with flat horizon. We obtained a Smarr-type formula for the mass of the black brane as a

function of the entropy, the charge, and the angular momenta, and found that the conserved

and thermodynamics quantities satisfy the first law of thermodynamics. We also studied

the phase behavior of the (n+1)-dimensional rotating black branes in third order Lovelock

gravity and showed that there is no Hawking-Page phase transition in spite of the angular

momenta of the branes and the presence of a nonlinear electromagnetic field. Indeed, we

calculated the heat capacity and the determinant of the Hessian matrix of the mass with

respect to S, J, and Q of the black branes and found that they are positive for all the phase

space, which means that the brane is locally stable for all the allowed values of the metric

parameters.
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