

Scannea by Camscanner

Scanned by CamScanner

\qquad

$$
=r, 1 q+r, r q+r, 44=V, r,
$$

$$
I_{x y}=\int x y d A=\sum_{i=1}^{\mu}\left(I_{x y} y_{c_{i}}+A \times x c_{i} y_{c_{i}}\right)=\left(0+\left(p_{x}\right) \times(0, q) \times(y, \omega)\right)+\left(0+\left(y_{x}+1\right) \times(-0,4) \times(0)\right)
$$

$$
+(0+(r \times 1) \times(0,9) \times(-r, \Delta))=r, d+0-r, d=0
$$

$$
\begin{aligned}
& =1 r, y+1 r, v+1 \Lambda=r \nu, \mu
\end{aligned}
$$

$$
\delta_{A L}=\int \frac{10}{A_{S t} E_{S t}} d l=\frac{l_{0} L_{A L}}{A_{A C} E_{A L}}
$$

$|C \min |$

(1) $0^{4}: A L^{\$}$,

$$
\operatorname{sov}_{S p} \hat{v}_{0} J_{J_{9}}, S_{S t}=\frac{(-1) L_{s t}}{A E_{s+}}
$$

血

(4)

$$
\begin{aligned}
& T_{\rho c w, ~}^{\text {F }} \text { E }
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow F_{E}=0 \Lambda^{\omega} \times 10^{4}
\end{aligned}
$$

: Glockiweriolovic

$$
\begin{aligned}
& \sin ^{c} \sigma_{1}=\frac{0,\left.V_{x}\right|^{u}}{\Lambda \times 1: r}=0,9 G_{p a} \\
& \sin ^{\prime} \sigma_{\mu}=\frac{0, V \times 10^{4}}{r_{\Delta} \times 1:^{-4}}=0, G^{r} G_{p u}
\end{aligned}
$$

$\operatorname{cin}^{c} \sigma_{0}=\frac{r, v \times l^{4}}{|r \times|^{-8}}=r G_{P a}$

$$
\begin{aligned}
& \varepsilon_{p}=\frac{0, r_{v 1} 9}{V_{0} \times 10_{0}^{9}}=0,005 r \quad \delta_{c / A}=\text { ? } \\
& \varepsilon_{r}=\frac{\mu \times 1 \cdot}{\mu 00 \times 1!^{\circ}}=01010=\delta_{/ B}+\delta_{B / A}=\delta_{\mu}+\delta_{1}=\ldots
\end{aligned}
$$

但min \quad m

$$
\left.\delta=\frac{P}{E} \int \frac{d z}{H_{y^{r}}^{r}}=\frac{\Gamma P L^{r}}{E \pi\left((--x)^{r}\right.}\left(-\frac{1}{z}\right)\right]_{m}^{m+L}=
$$

$$
W=m g=\rho F((s) g=\rho g V
$$

$$
V(y)=\int_{m}^{y} A d y
$$

$$
=\int_{m}^{2} \pi r^{r} d y
$$

$$
\begin{aligned}
& W(y)=\rho g V(z)=\rho g\left(10 y^{\mu}-v\right)=1 V_{y^{\mu}}^{\mu}-14 \quad \text { "dno }
\end{aligned}
$$

$$
\begin{aligned}
& =-0,1\left(-\left[\frac{1}{L+m}-\frac{1}{m}\right]\right)+0 / 1+\frac{(L+m)^{r}-m^{r}}{r}=\square
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
A_{1}=0, \Delta m^{r} \\
A_{r}=0, r m
\end{array} \\
& E_{1}=r_{00} G_{p a} \\
& E_{r}=V_{0} G_{p a}
\end{aligned}
$$

$$
\begin{array}{ll}
\varepsilon F_{n}=0 & F_{\varepsilon} \sin y_{0}+r_{0} \sin r^{\prime} \omega=F_{r} \sin \mid \alpha+F_{0} \sin r_{0} \\
\varepsilon F_{y}=0 & r_{0} \sin \omega=F_{\varepsilon} \cos \psi_{0}+F_{r}+F_{\mu} \cos \mid \alpha+F_{1} \cos r_{0}
\end{array} \quad \begin{aligned}
& J_{s} b_{0} r \\
& r_{0} b
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\Delta \cos \alpha=\delta_{r}=\frac{F_{r} \times V, \alpha}{r \times r} \\
\Delta \cos (1 \omega-\alpha)=\delta_{\mu}=\frac{F_{r} \times 4, V}{r \times 4} \\
\Delta \cos \left(r_{0}-\alpha\right)=\delta_{1}=\frac{F_{1} \times 4 / \omega}{r \times \Lambda} \\
\Delta \cos \left(y_{0}+\alpha\right)=\delta_{r}=\frac{F_{r} \times 1 \mu}{\alpha \times 10}
\end{array}\right\}
$$

 Jibo, brepl Secion Lofown ,

ρP_{0}

$$
\begin{aligned}
& \Longleftarrow \circlearrowleft e(1 \\
& F_{1}=\left(0, k \mu-2,1 \alpha \alpha_{t}\right) F_{r} / \text { II }
\end{aligned}
$$

$$
\begin{aligned}
& \left.0, \Gamma^{\sim}-9,02 \times 10^{-V} F_{1}=1,0\left(\left(1,0 F_{1}\right) \times 0,\right)^{\circ} \times V_{0}^{V}-0,94\right) \\
& \text { : IIoI } \Leftarrow
\end{aligned}
$$

 untol whenema

Whe:

$$
\begin{aligned}
& \frac{\Delta_{r}}{1}=\frac{\Delta_{1}}{r} \\
& =\sqrt{\Delta_{r}=r \Delta_{r}} \text { III } \\
& \text { IV } \longrightarrow \text { IIIIV: }_{\Delta_{1}=r, 4 r_{x} / 0_{r} r_{r}}
\end{aligned}
$$

$14{ }^{1} 0^{Y}=P, \Gamma F_{P}+\angle F_{F}$

$$
\sigma_{\sigma_{1}}=v_{1}, m_{p} m_{p}
$$

Scanned by camscanner

$$
\begin{aligned}
\frac{1}{\cos \beta}\left(\frac{L_{r}}{A_{1} E_{1}} ?_{p}^{?}-\alpha, L T\right)=\frac{x}{\alpha \cos \alpha}\left(\alpha, L, \Delta T-\frac{L_{1}}{A_{1} E_{1}} F_{1}\right) & I
\end{aligned} F_{1}^{V} \rightarrow G_{1}^{J}
$$

iogblo
(11)

$$
F_{1}=\frac{r_{\alpha}}{m} F_{\bar{r}}
$$

Scanned by CamScanner

$$
\begin{aligned}
& \overline{A B}=r_{\phi} d_{\varphi} \\
& \overline{A C}=r_{t} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma F_{r}=\text {, } \\
& \therefore \overparen{A C} A B \\
& o=P_{i}(\widehat{A C} \times \widehat{A B}) \\
& -r \sigma_{\theta} \sin \left(\frac{d \theta}{r}\right) \times(t \widehat{A B})-r \sigma_{\phi} \sin \left(\frac{d P}{r}\right) \times(t \overline{A C}) \\
& , \frac{p_{i}}{t}=\frac{r \sigma_{t} \sin \left(\frac{d \theta}{r}\right)}{A c}+\frac{r \sigma_{0} \sin \left(\frac{(d q)}{r}\right)}{A B} \\
& \frac{P_{i}}{t}=\frac{\sigma_{t} d \theta}{d s_{t}}+\frac{\sigma_{\varphi} d \varphi}{d s_{\phi}}=\frac{\sigma_{Q}}{r_{\phi}}+\frac{\sigma_{t}}{r_{t}} \\
& \frac{P}{t}=\frac{\sigma_{Q}}{r_{Q}}+\frac{\sigma_{t}}{r_{t}} \quad \quad J_{s} l_{s o}
\end{aligned}
$$

$\sigma_{\phi}=?$

$$
\begin{aligned}
& O_{\phi} M \pi x t==\operatorname{Vin}=\operatorname{Pg} V \\
& V_{\sim}^{\sim}=\frac{\mu \pi R^{\mu}}{\mu}+\frac{\pi R^{\mu}}{\mu}\left(\sin ^{\mu} \alpha-\mu \sin \alpha\right) \xrightarrow{\alpha}{ }^{\mu}{ }_{0} \\
& \left.=\frac{r \pi R^{r}}{r}+\frac{\pi R^{r}}{r}\left(\frac{1}{\pi}-\frac{r}{r}\right)=9 / r \right\rvert\, \pi R^{r}
\end{aligned}
$$

$$
0 \int\left\{\left(\sigma_{n}-\frac{\left(\sigma_{n}+\sigma_{y}\right)}{r}\right)^{2}=\left(\frac{\sigma_{n}-\sigma_{6}}{r}\right)^{r} \cos ^{r} \theta+\tau_{n y} \sin ^{n} x^{2} \theta-\right.
$$

$$
\text { (})\left(\bar{Z}_{n^{\prime} y^{\prime}}^{r}=\left(\frac{\sigma_{n}-\sigma_{y}}{r}\right)^{r} \sin ^{2} r^{r}+\tau_{n y}^{r} \cos ^{r} \hat{S}^{\prime}\right.
$$

$$
\left.-\left(b_{x}-b_{y}\right) \tau_{x y} \sin ^{r} \theta \cos ^{r} \theta\right]
$$

$$
\underbrace{\left(\sigma_{a^{\prime}}-\frac{\sigma_{n}+\sigma_{y}}{r}\right)^{r}}_{\left((n-c)^{r}+y^{r}\right.}+\tau_{n^{\prime} y^{\prime}}^{r}=\left(\frac{\sigma_{a}-\sigma_{y}}{r}\right)^{r}+\tau_{n y}^{r}, R^{r}
$$

 Tarer y!

$$
\begin{aligned}
& l
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \frac{\delta_{y}}{\delta x}, \frac{\partial z}{\partial x}, \frac{d y}{d x} \hat{\theta} ; \cdot x_{0, \prime}, \dot{z}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D) }\left\{\begin{array}{l}
0
\end{array}\right\} \\
& \sigma_{r^{\prime}}-\frac{\sigma_{x}+\sigma_{y}}{\sigma^{2}}=+\frac{\sigma_{n}-\sigma_{y}}{2} \cos ^{r} \theta+\tau_{x y} \sin ^{5} \theta \\
& \sigma_{x^{\prime}}^{\prime}-\frac{\sigma_{n}^{2}+\sigma_{z}}{2}=-\frac{\sigma_{n}^{2}-\sigma_{n}}{2} \cos 1 \theta-\sigma_{n} y^{2} \sin \theta \\
& 4 \times 4 \\
& \lambda_{n y i}^{\prime}=-\left(\frac{b_{n}-b_{y}}{2}\right) \sin ^{r} \theta+\tau_{n y} \cos ^{2} \varphi_{\theta}
\end{aligned}
$$

 （18）团
母

G-a

行
4．

CTr

$$
w^{2}=i
$$

$O_{\prime^{\prime \prime}}^{\prime}=C+R \cos v_{0}=F, V V$ ksi
$O_{y^{\prime \prime}}=C-R \cos v_{0}=r, Y r$ ksi

$C_{x^{\prime \prime} \prime \prime}=R \sin v_{0}=r, 99 \mathrm{ksi}$

$$
\begin{aligned}
& \sigma_{a}=\frac{1}{A}[(A+r) \sin y,], C=\frac{1}{A}\left[(A \times r) \cos \varphi_{0}\right]=r k s i \\
& =r, \Delta \mathrm{ksi} \\
& \text { 安 }
\end{aligned}
$$

$R \sin ^{t} t a=r k s i=1 / 2 /$

$$
R=\Gamma, \Lambda \mathrm{ksi}
$$

$$
r, \omega=c-\widetilde{R} \overbrace{\cos \hat{\omega}}^{r} \Rightarrow c=\omega / \omega
$$

$$
\begin{equation*}
\Longrightarrow \sigma_{b}=c+R \cos ^{5} \varepsilon_{0}=V, d \mathrm{ksi} \tag{i}
\end{equation*}
$$

$$
\sigma_{p}=\mu r, \omega \text {, }\left\{\begin{array}{l}
\sigma_{\text {max }}^{-}=\sigma_{v}=c+R=1, \mu \mathrm{ksi} \\
\sigma_{\text {min }}=\sigma_{n}=c-R=r, V \mathrm{ksi}
\end{array}\right.
$$

$$
\begin{aligned}
& \sigma_{c_{1}}=c+R \cos \mid d=1, r k s i \\
& \sigma_{c_{r}}=c-R \sin \mid \Delta=r / \Lambda k s i \\
& \text { b } \\
& \tau_{c c}=R \sin 1 \Delta=0, \mathrm{~V} \mathrm{k} 5 \mathrm{c} \\
& b-b \\
& \text { rtocm }
\end{aligned}
$$

$$
\begin{aligned}
& P=100 \mathrm{kpa} \\
& t=10 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 1 s_{V_{\Delta}}=\frac{u v_{/ s)}}{r}=\frac{\mid r, \Delta+r_{\omega}}{r}=C \\
& \sigma_{t^{\prime}}=c-R_{\cos 10}=|V / 4 / 4 \times 1|_{0 \text { por }}^{\infty}
\end{aligned}
$$

豦若

$$
\begin{aligned}
& \sigma_{1}=\frac{\beta \varphi_{1},}{A_{1}}=14, r \quad \sigma_{r}=\frac{19 r_{,},}{A_{r}}=r, \sigma
\end{aligned}
$$

$$
\begin{aligned}
& 4, \% \times 10^{-a}=\varepsilon_{\mathrm{AF}}=\frac{\alpha L \Delta T-\frac{R L}{A \epsilon}}{R \epsilon}
\end{aligned}
$$

屏

superposition

$$
\begin{aligned}
& \text { ancer } \\
& : A \subset 1,
\end{aligned}
$$

$$
\begin{aligned}
& \underset{B}{\text { N }} \\
& \begin{array}{l}
n=\sqrt{\left(4 \cos ^{r} 0\right)^{r}+\left(\Delta+4 \sin r^{r}\right)^{r}}=? \\
l_{n}^{r} \sqrt{\Delta^{p}+\eta^{r}-r(\Delta x+\eta) \cos \left(l^{n}+t^{r}\right)}=?
\end{array} \\
& B C^{2}=C X^{r}+B X^{r}
\end{aligned}
$$

$$
\varepsilon_{i}=\frac{1}{E}\left(\sigma_{i}-v\left(\sigma_{j}+\sigma_{k}\right)\right)
$$

$$
\varepsilon_{\varepsilon}^{\varepsilon}=S_{\varepsilon} t_{\varepsilon}
$$

C^{c}
Kismin

Goibilt everer

$$
\left[F_{0}+F_{5}\right]
$$

$\alpha \sim a$
$\omega \sim v$ $\theta \sim x$
,
Nus on

 .

Scanned by CamScanner
ξ_{6}

$$
\sigma_{0,1}=I_{n x}+I_{y y}=\frac{\pi}{r} R^{r}
$$

$$
J=r \pi R^{\mu} \phi
$$

$$
J=\frac{\pi}{H}\left(R_{s, ~}^{\psi}-R_{s}^{k}\right)
$$

(1) $n_{0}=$

$$
Q_{B / A,}=Q_{B / E_{0}}=\frac{T L}{G J}
$$

$$
\left|\frac{\left(T_{R}-r_{n}+\gamma-\omega\right) \times r}{r^{\mu} \times r \wedge \times 1_{0}^{\infty}}\right|=
$$

$$
\begin{aligned}
& \frac{T R}{T}=T_{\text {max }}=\left|\frac{\left(\mid \alpha-r_{A}+4-\alpha\right)\left(\frac{1}{\Lambda}\right)}{{ }^{\mu} \Lambda_{x} \mid 0^{-\sigma}}\right|=|\mu| \omega, \Lambda \mathrm{pa} \\
& \tau_{\text {max }}=\left|\frac{\left(1 a-b^{r}+{ }^{+}\right)\left(\frac{1}{n}\right)}{r n \times 10^{-\Delta}}\right|=r r \mu, 9 \mathrm{pa}
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{\max }=\left|\frac{(1 \Delta)(1) \mid}{1, \Delta V}\right|=9, y \text { pa }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (㝽 } T=1,04
\end{aligned}
$$

 (n)

 I.

$$
\int_{-=1}^{w}, \partial_{p}, I_{u n}, L_{y v}
$$

Scanned by CamScanner

(6)

少少

$$
e_{\sim}^{2}
$$

$$
\left(\frac{y}{l} \downarrow\right) \text {) }
$$

－ロッシン（

$$
\bar{Z}=\frac{\int z d A}{A}=\frac{\int \rho \cos \theta d A}{A}
$$

$$
=\frac{f_{0}^{*} \rho^{r} \rho(\cos \theta d \theta)}{\frac{\pi}{r} r^{r}}=\frac{\left.\frac{R^{r}}{r} \sin \theta\right]^{0} \pi^{r}}{\frac{\pi}{r} R^{r}}=0
$$

sol9-íl

$$
0
$$

$8{ }^{8}$
$: \sigma \mu \operatorname{loj} \underset{\sim}{\operatorname{Lon} \log \pi}$
~ 1 , 1

$$
\left(b v_{i v}, c_{g 4} b_{0}\right.
$$

N inir

$I_{y=1}=\int_{y z} d A=\int_{(t y)(t)} d A+\int(t+y)(-) d A$ $+\frac{f(4)(t)}{(0)} d A+f(-x)(-2) d A$

Sea

(89)

$$
\begin{aligned}
& \text { 1) }
\end{aligned}
$$

$$
\begin{aligned}
& I_{r_{\bar{\gamma}}}=1 \Lambda \rho \times 1_{0}^{-4} m^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{n}=-\frac{M_{2}}{I_{22}} 1 \quad \sigma_{n=1}^{E_{1}=n=r_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { 3D } \\
& \text { (} \omega_{0}
\end{aligned}
$$

