
Biomaterials Sterilization Methods

Introduction:

- Sterilization is a process in which all living and non-living organisms are removed
- Sterilization is the final step in the production of any biom aterials
- Sterilization is the best way to limit the risk of infection
- The purpose of sterilization is to deactivate the cellular p rocesses involved in metabolism and

Sterilization Methods:

> physical:

- Autoclave
- Irradiation Sterilization
- Dry heat sterilization

> Chemical:

- Ethylene Oxide
- Hydrogen Peroxide Plasma

Ethylene Oxide:

✓ Ethylene oxide sterilization is a chemical process

✓ EO is an alkylating agent that disrupts the DNA of micro organisms

✓ consisting of four primary variables:

- gas concentration → 450-1200 mg L−1
- Humidity 40-80%
- temperature → 40-65 °C
- Time —— from a few hours up to a few days

Ethylene Oxide:

The sterilization process should ensure that all the para meters are placed inside the compartment

- Residual ethylene oxide after the sterilization process is toxic
- The ethylene oxide sterilization process consist of three processing phases:
 - Pre-conditioning
 - Sterilization
 - Aeration

Advantages of EO sterilization:

- high diffusivity through solid matrixes
- Effectiveness and compatibility with most materials
- Flexibility, from the dependency on several factors
- It can sterilize heat-, moisture- and/or radiation-sensitive medical items
- For many MDs, elastomer polymeric materials and biom aterials, EO is the sterilant of choice

Disadvantages of EO sterilization:

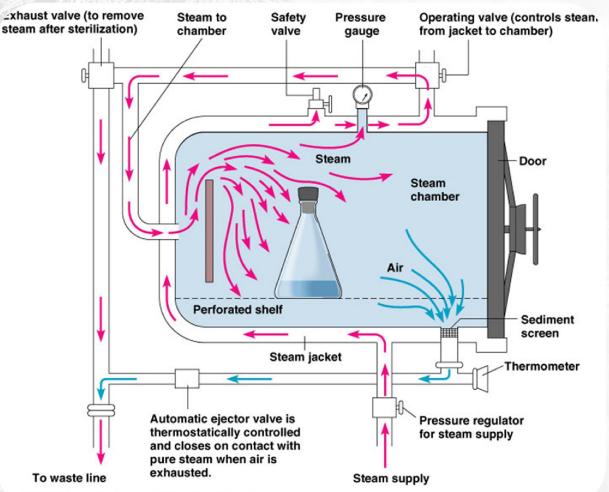
- lengthy cycle
- Cost
- potential hazards to patients, staff and environment
- the risks of handling a flammable and explosive gas.
- EO sterilization is not commonly recommended for liquid or powder products

Hydrogen Peroxide Plasma:

- ✓ This process is fast and efficient and is carried out in a humid en vironment and low temperature.
- ✓ Gas plasmas are generated in an enclosed chamber under deep vacuum using RF or microwave energy
- ✓ The five stages of the process consist of:
 - I. Vacuum
 - II. injection
 - III. Diffusion
 - IV. Plasma
 - V. Vent
- ✓ The process operates in the temperature range of 37–44 °C and has a cycle time of 75 min

Advantages	Disadvantages
Safe for the environment	Cellulose, linens, and liquids c annot be processed
no toxic residuals	Some endoscopes or medical devices with long or narrow l umens cannot be processed
Cycle time is 28–75 min	Hydrogen peroxide may be to xic at levels greater than 1 pp m time-weighted average
Used for heat- and moisture-s ensitive items since process te mperature <50 °C	
Simple to operate	
Compatible with most medical devices	

Autoclave:


- The efficiency of the sterilization process depends on two major factors:
 - the thermal death time
 - the thermal death point or temperature
- Autoclaves use pressurized steam as their sterilization agent
- autoclaves need to have steam in direct contact with the material
- Moist heat destroys microorganisms by the irreversible coagulation and denaturation of enzymes and structural proteins

Autoclave:

✓ Process steps include:

- preparation
- Loading
- air removal
- heating
- sterilization
- Exhaust
- drying

royright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

types of Autoclave:

I. autoclave class N —— temperature:121 °C

II. autoclave class S

temperature: 121°C/pressur:1.1 bar

III. autoclave class B

temperature: 134°C/pressur:2.1 bar

Irradiation Sterilization:

 \checkmark It is a simple, rapid and efficacious method of sterilization

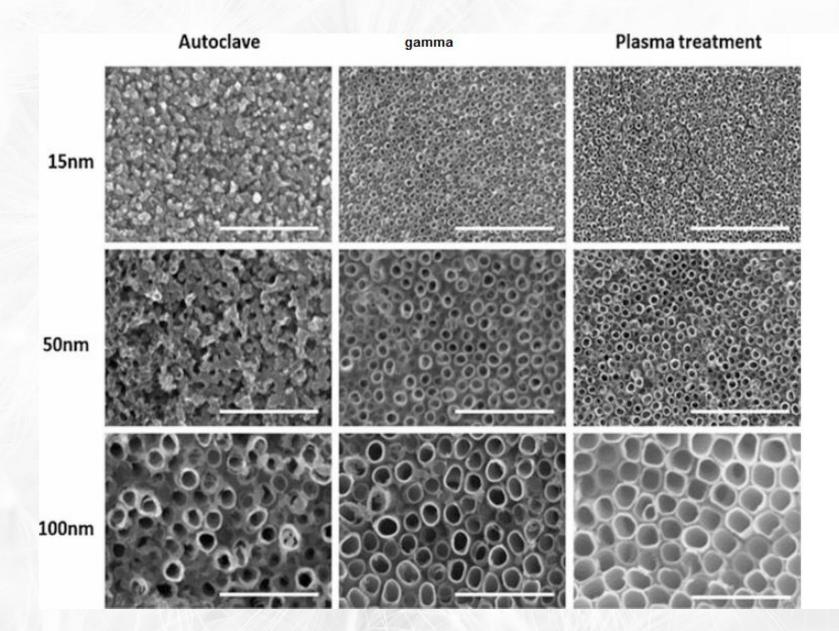
- ✓ Either gamma rays from a cobalt-60 (60 Co) isotope source is used
- ✓ used when materials are sensitive to the high temperature
- The most commonly validated dose used to sterilize medical devices is 25 kGy
- The main disadvantage of ths method is high cost

Dry heat sterilization:

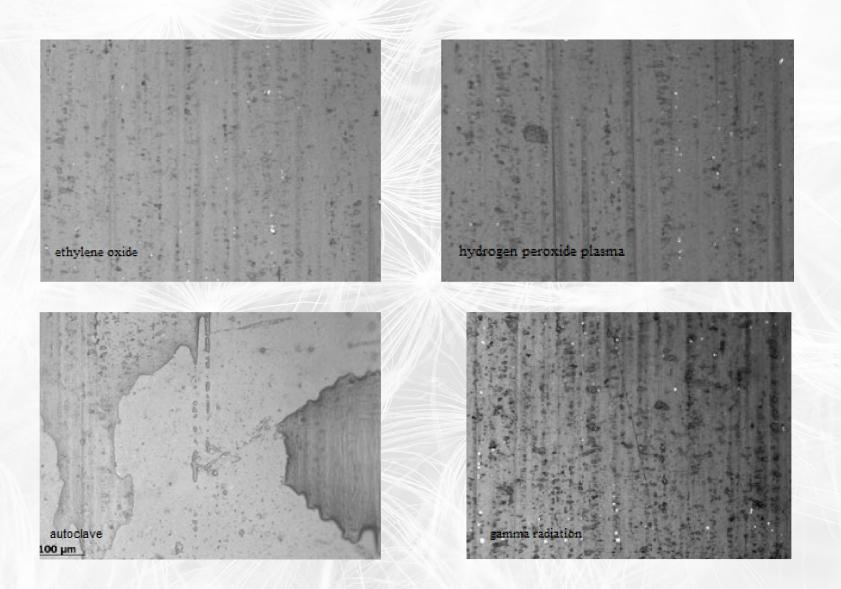
 \checkmark It is not often used in the medical device

- ✓ Dry heat sterilization requires higher temperatures and longer exposure times than moist heat sterilization
- Dry heat sterilization occurs primarily by dehydration a nd oxidation
- ✓ This method occurs at 160-190 ° C sterilization
- Microorganisms are destroyed by coagulation of heat-i nduced protein

Dry heat sterilization:


The heat travels through the enclosure through conduction or transfer

- Based on this aspect, there are two methods that are used:
 - Sterilization according to tensile conduction
 - Sterilization in accordance with mechanical conduction



	polymer	ceramic	metal
EO	X	\checkmark	\checkmark
H2O2 gas	Elastomer, Silicon,PLA		\checkmark
autoclave	Some		most
Gamma ray	Pla	\checkmark	\checkmark
Dry heat	Acetal,PTFE, Polysulfone , silicon,PLA		X

Influence of various sterilization procedures on metals:

Influence of various sterilization procedures on polymers:

