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Abstract
To find the possible way of adsorption and detecting the toxic gas of AsH3, we have studied the interactions between AsH3

molecule and modified (5,5) single-walled carbon nanotubes by using the method of density functional theory (DFT). The
interaction distances, adsorption energies, and geometry and electronic changes of structures were investigated to explore the
sensitivity of variety of models of single-walled carbon nanotubes (SWCNTs) with Fe doping, Stone-Wales defects, and a
combination of them toward AsH3 molecule. From calculated results, it was found that AsH3 molecule was more likely to be
absorbed on Fe-doped CNTs with relatively higher adsorption energy and higher charge transfer and shorter interaction distance
compared with that on the pristine and defected SWCNTs.
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Introduction

Arsine (AsH3) is a colorless toxic gas with mild garlic-like
odor and slightly soluble in water that used in semiconductor
industry [1, 2]. If small amount of AsH3 was ingested into
human body, it can trigger serious health problem such as
disease so called arsenicosis [3–10]. Due to very strong tox-
icity of arsine, recently, its threshold limit value (TLV) is re-
duced to 5 ppb time-weighted average (TWA) [11]. So it is
necessary to have continuous monitoring of this highly toxic
gas in industrial buildings.

Carbon nanotubes (CNTs) have attracted considerable
interest in light of their wide potential window in chem-
ical properties and applications. Carbon nanotubes have
strong abilities of adsorption and desorption for toxic
gas molecules. It becomes potential resource for toxic
gas detecting with changing the electrical conductivity
of these materials upon presence and adsorption of these
molecules in gaseous form. Meanwhile, the sensitivity
of pure carbon nanotubes is only restricted to small
range of gases.

Doping some other atoms on the carbon nanotubes is an
effective method for improving the gas-sensing properties of
these materials [12–26]. By doping, more centers for gas in-
teraction on the carbon nanotube surface are generated. By
this strategy (doping), there is a potential possibility of carbon
nanotubes serving as a chemical sensor for large variety of
molecules such as poisonous gases [27–35]. Arsine adsorp-
tions on the surface of graphene such as gold-modified re-
duced graphene oxide [1] and Sc-, Ti-, V-, and Cr-doped sin-
gle-walled carbon nanotubes [14] were investigated and re-
ported. Kunaseth et al. [36] used density functional theory
(DFT) method to study arsine gas adsorption on palladium-
doped graphene.

Another effective way to increase the sensitivity of CNTs
to the molecules is making defects on the tubes. Previous
experimental and theoretical studies showed that the existence
of defects, such as vacancies [37], ad-dimer defect [38],
Stone-Wales defect [39], and inverse Stone-Wales defect
[40], in the structure of carbon nanomaterials can make
change on the electronic [41, 42] and mechanical properties
[43]. Zanolli et al. pointed out that defected CNTs could be
used as a sensor for small molecules such as NO2, NH3, H2O,
and CO2 [44]. Horner and co-workers found that SWCNTs
with ad-dimer defects are chemically more reactive than per-
fect tube walls [45]. Roh et al. investigated the interaction of
alkanethiol molecules and CNTs with Stone-Wales defect and
found that these sites on the nanotube surface are active [46].
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Dinadayalane et al. reported that 5775-Stone-Wales (SW)-
defected CNTs are more sensitive for detecting methylene
than perfect nanotubes [47].

In this work, we explore the sensitivity and adsorption be-
havior of pristine, Stone-Wales-defected, and Fe-doped CNTs
to arsine toxic gas by means of DFT calculations.

Computational method

In order to examine the adsorption behavior of arsine gas mol-
ecule on pristine, Stone-Wales-defected, Fe-doped SWCNTs
and a combination of them comprehensively, we selected
(5,5) armchair semiconductor carbon nanotube which has 70
carbon atoms and 20 hydrogen atoms as the basic calculation
model (see Fig. 1). The length of the nanotube is 7.34 Å, the
diameter of it is 6.99 Å, and the average C–C bond length is
1.42 Å. Fe transition metal atom was doped onto the (5,5)
SWCNT by replacing one carbon atom of the (5,5) SWCNT
with Fe atom. Structure, electronic properties, charge transfer,
and adsorption energy were performed on AsH3 adsorption on
pristine, Fe-doped, and defected (5,5) single-walled carbon
nanotubes. Electronic properties of the arsine adsorbed on the
CNTs were compared with each other by using GaussSum
2.2.5 program [48] and plotting electronic density of state

(DOS) for all structures. Nanotube and arsine were placed to-
gether in an input file to be optimized in presence of each other.
All the calculations were completed with the Gaussian 09 soft-
ware [49] using the density functional theory (DFT) and were
performed using the B3LYP [50, 51] method and Los Alamos
LanL2DZ split-valence basis set [52–54].

To evaluate the interaction between the AsH3 gas and pris-
tine SWCNT (PS-SWCNT), Fe-doped SWCNT (Fe-
SWCNT), 5775-Stone-Wales-defected SWCNT (5775-
SWCNT), and 7557-Stone-Wales-defected SWCNT (7557-
SWCNT), their adsorption energies (Eads) were calculated
by Eqs. (1), (2), (3), and (4), respectively.

Eads ¼ E AsH3=PS−SWCNTð Þ−E PS−SWCNTð Þ−E AsH3ð Þ
ð1Þ

Eads ¼ E AsH3=Fe−SWCNTð Þ−E Fe−SWCNTð Þ−E AsH3ð Þ
ð2Þ

Eads ¼ E AsH3=5775−SWCNTð Þ−E 5775−SWCNTð Þ−E AsH3ð Þ
ð3Þ

Eads ¼ E AsH3=7557−SWCNTð Þ−E 7557−SWCNTð Þ−E AsH3ð Þ
ð4Þ

An exothermic or endothermic process has a negative or
positive value for Eads, respectively. According to the obtained

Fig. 1 The B3LYP/LanL2DZ
optimized structures of a PS-
SWCNT, b 5775-SWCNT, and c
7557-SWCNT
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Fig. 2 The B3LYP/LanL2DZ
optimized structures of the AsH3

molecule adsorption
configurations of a AsH3/PS-
SWCNT, b AsH3/5775-SWCNT,
and c AsH3/7557-SWCNT. Top
and bottom are side and front
views of tubes. Bond distances
are in Å

Table 1 Selected geometrical parameters of the pristine and Stone-Wales-defected SWCNTs, their Fe-doped structures, and their AsH3 adsorptions,
computed at the B3LYP/LanL2DZ level

Species Bond length (Å) Binding distance (Å) Bond angle ( °)

C1–M
a,b C2–M

a,b C3–M
a,b C1–M–C2 C2–M–C3 C3–M–C1

PS-SWCNT

PS-SWCNT 1.417 1.441 1.441 – 118.596 120.233 118.596

Fe-PS-SWCNT 1.880 1.785 1.785 – 92.018 97.310 92.018

AsH3/PS-SWCNT 1.418 1.441 1.441 5.088 119.333 119.820 117.930

AsH3/Fe-PS-SWCNT 1.824 1.793 1.793 2.529 93.221 99.077 93.224

5775-SWCNT

5775-SWCNT 1.352 1.467 1.467 – 126.575 106.834 126.575

Fe-5775-SWCNT 1.737 1.794 1.794 – 100.835 87.885 100.835

AsH3/5775-SWCNT 1.352 1.467 1.467 3.519 126.577 106.831 126.576

AsH3/Fe-5775-SWCNT 1.692 1.836 1.846 2.529 97.168 89.217 98.229

7557-SWCNT

7557-SWCNT 1.405 1.467 1.467 – 108.882 120.656 108.883

Fe-7557-SWCNT 1.781 1.884 1.884 – 85.170 91.536 85.170

AsH3/7557-SWCNT 1.406 1.467 1.467 3.353 108.857 120.750 108.865

AsH3/Fe-7557-SWCNT 1.783 1.906 1.906 2.496 83.326 87.522 84.725

a C1, C2, and C3 are atoms on the SWCNTs which are defined in Fig. 1
bM is C atom for without Fe doping species and Fe metal which is doped on SWCNT species labeled in Figs. 1 and 4, respectively
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results, exothermic process with negative value for adsorption
energy represents stronger interaction between AsH3 and
single-walled carbon nanotubes.

Results and discussion

Adsorption of arsine on pristine and defected CNTs

We first studied the adsorption of AsH3 molecule on the
pristine and defected (5,5) CNT without Fe doping. The
optimized structure of pristine and Stone-Wales-defected
(5775-SWCNT and 7557-SWCNT) (5,5) CNT was
displayed in Fig. 2, and bond lengths and bond angles
of the structures are listed in Table 1. The adsorptions
of arsine gas molecule on the pristine CNT are not
affected by the C–C1, C–C2, and C–C3 bond lengths.
The adsorption energies (Eads), shortest distance between
the As atom of arsine and the nearest carbon atom (D),
and charge transfer from AsH3 to CNT were all present-
ed in Table 2. From data of Table 2, it indicates that the
shortest distance between As atom and CNT is 3.353 Å
from AsH3/7557-SWCNT configuration.

The adsorption energy and charge transfer are − 0.35 kcal/
mol and 0.040 e, respectively. These results showed that the
interaction between AsH3 molecule and 7557-SWCNT was
weak electrostatic interaction. Like this, the interaction dis-
tance between gas molecule and substrate was relatively long;
the electrostatic interaction was weak and the charge transfer
is small, so we could say the adsorption between gas and CNT
would be physical adsorption. The adsorption energy, distance
between As and CNT, and charge transfer for interaction be-
tween arsine and perfect site CNT (AsH3/PS-SWCNT) are −
0.27 kcal/mol, 5.088 Å, and zero electron, respectively, and
these parameters for interaction between As and 5775-
defected CNT (AsH3/5775-SWCNT) are − 0.79 kcal/mol,
3.519 Å, and 0.002 e, respectively. These parameters indicated
that in two configurations of AsH3/PS-SWCNT and AsH3/
5775-SWCNT, arsine molecule adsorbed on CNT was phys-
ical adsorption and the electrostatic interactions were weak.

Fig. 3 The density of state plots of PS-SWCNT, AsH3/PS-SWCNT, 5775-SWCNT, AsH3/5775-SWCNT, 7557-SWCNT, and AsH3/7557-SWCNT

Table 3 The highest occupied molecular orbital energies (EHOMO), the
lowest unoccupied molecular orbital energies (ELUMO), and HOMO-
LUMO energy gap (HLG) of pristine (PS-SWCNT) and Stone-Wales-
defected SWCNT (5775-SWCNT and 7557-SWCNT) and their AsH3

adsorption structures

Species ELUMO EHOMO HLG

PS-SWCNT − 2.67 − 4.88 2.21

AsH3/PS-SWCNT − 2.68 − 4.90 2.22

5775-SWCNT − 2.85 − 4.91 2.06

AsH3/5775-SWCNT − 2.72 − 4.98 2.26

7557-SWCNT − 2.95 − 5.16 2.21

AsH3/7557-SWCNT − 2.98 − 5.18 2.20

Table 2 The adsorption energy (Eads), the distance between AsH3 and
nanotube (D), and the charge transfer from AsH3 molecule to tube

Configuration Eads (kcal/mol) D (Å) Q (e)

AsH3/PS-SWCNT − 0.27 5.088 0

AsH3/5775-SWCNT − 0.79 3.519 + 0.002

AsH3/7557-SWCNT − 0.35 3.353 + 0.040
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In order to deeply understand the effects of defects onAsH3

adsorption on CNTs, the electronic properties of these systems
were obtained and analyzed by density of states (DOS) plots.
As shown in Fig. 3, the DOS of PS-SWCNT, AsH3/PS-
SWCNT, 5775-SWCNT, AsH3/5775-SWCNT, 7557-
SWCNT, and AsH3/7557-SWCNTwere depicted. Also, ener-
gies of HOMO, LUMO, and HOMO-LUMO gap (HLG) were
all presented in Table 3. It was found that there was no signif-
icant change between the PS-SWCNTand AsH3/PS-SWCNT,
and PS-SWCNT after adsorption of AsH3 still presented the
characteristics of semiconductor. Also, for 7557-SWCNTand
AsH3/7557-SWCNT, the same results are obtained. From the
calculated results of band gap energies, 5775-SWCNT was

2.06 eV before adsorbing AsH3, which became 2.26 eV in
AsH3/5775-SWCNT configuration indicating that the 5775-
SWCNT was more sensitive to detect AsH3 molecule by de-
creasing electrical conductivity.

Adsorption of AsH3 on pristine and defected CNTs
with Fe-doped

In this section, we investigated the adsorption of AsH3 mole-
cule on Fe-doped and Fe-doped defected CNTs. We used the
Fe atom to replace the C atom of CNT, and structures of Fe-
PS-SWCNT, Fe-5775-SWCNT, and Fe-7557-SWCNT were
made. When doping Fe atom on the structures, the geometry
of structures was dramatically changed. By geometry optimi-
zation, the Fe atom located out of the tube wall and there was
an embossment at the Fe-doped site, because of the bigger
radius of Fe atom (Fig. 4). Taking Fe-5775-SWCNTas exam-
ple for analysis, we found that the calculated bond lengths of
C1–Fe, C2–Fe, and C3–Fe were 1.737, 1.794, and 1.794 Å
which were longer than those of C1–C, C2–C, and C3–C with
the values of 1.417, 1.441, and 1.441 Å in 5775-SWCNT
configuration, respectively.

Fig. 4 The B3LYP/LanL2DZ
optimized structures of the Fe-
doped as a Fe-PS-SWCNT, b Fe-
5775-SWCNT, and c Fe-7557-
SWCNT. Right and left are side
and front views of tubes

Table 4 The adsorption energy (Eads), the distance between AsH3 and
nanotube (D), and the charge transfer from AsH3 molecule to tube

Configuration Eads (kcal/mol) D (Å) Q (e)

AsH3/Fe-PS-SWCNT − 57.34 2.529 0.142

AsH3/Fe-5775-SWCNT − 50.79 2.529 0.138

AsH3/Fe-7557-SWCNT − 16.00 2.496 0.317
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The corresponding adsorption energy, interaction distance
between AsH3 and Fe atom, and charge transfer were listed in
Table 4. In general, the values of Eads of Fe-doped structures
were all larger than those of CNT without Fe doping, which
was an evidence that the Fe dopant significantly enhanced the
adsorption process. As shown in Table 4, the adsorption ener-
gy (Eads) of the AsH3/Fe-PS-SWCNT configuration was −
57.34 kcal/mol which was larger than that of AsH3/PS-

SWCNT (− 0.27 kcal/mol). Also for defected systems,
AsH3/Fe-5775-SWCNT and AsH3/Fe-7557-SWCNT, the
Eads were − 50.79 kcal/mol and − 16.00 kcal/mol which were
larger than those of AsH3/5775-SWCNT (− 0.79 kcal/mol)
and AsH3/7557-SWCNT (− 0.35 kcal/mol), respectively.

The adsorption distances (Fig. 5) of AsH3/Fe-PS-SWCNT,
AsH3/Fe-5775-SWCNT, and AsH3/Fe-7557-SWCNT config-
urations (2.529 Å, 2.529 Å, and 2.496 Å) were also smaller

Fig. 5 The B3LYP/LanL2DZ
optimized structures of the AsH3

molecule adsorption
configurations of a AsH3/Fe-PS-
SWCNT, b AsH3/Fe-5775-
SWCNT, and c AsH3/Fe-7557-
SWCNT. Top and bottom are side
and front views of tubes. Bond
distances are in Å

Fig. 6 The density of state plots of Fe-PS-SWCNT, AsH3/Fe-PS-SWCNT, Fe-5775-SWCNT, AsH3/Fe-5775-SWCNT, Fe-7557-SWCNT, and AsH3/
Fe-7557-SWCNT
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than those of AsH3/PS-SWCNT, AsH3/5775-SWCNT, and
AsH3/7557-SWCNT (5.088 Å, 3.519 Å, and 3.353 Å, respec-
tively). The larger adsorption energies (Eads) and smaller in-
teraction distances (D) indicate that the presence of Fe dopant
improved the activity of PS-SWCNT and defected SWCNTs.

For further study, the enhancement of the Fe doping
on the AsH3 adsorption, density of states (DOS) of sys-
tems, and charge transfer that changed between AsH3

and substrate had been calculated. Figure 6 showed
the DOS of systems around the Fermi level. Also, en-
ergies of HOMO, LUMO, and HOMO-LUMO gap
(HLG) were all presented in Table 5. From the calcu-
lated results of HOMO-LUMO gap energies, Fe-PS-
SWCNT and Fe-5775-SWCNT systems were 0.11 eV
and 0.25 eV before adsorbing AsH3 which became
1.95 eV and 1.91 eV in AsH3/Fe-PS-SWCNT and
AsH3/Fe-5775-SWCNT, respectively, while HOMO-
LUMO gap energy of Fe-7557-SWCNT was 2.01 eV
before adsorbing AsH3, which became 2.06 eV in
AsH3/Fe-7557-SWCNT. So, it was resulted that conduc-
tivities of Fe-PS-SWCNT and Fe-5775-SWCNT were
decreased during adsorption but there was no significant
change between HLG of Fe-7557-SWCNT and AsH3/
Fe-7557-SWCNT after adsorption of AsH3.

Upon the adsorption process, the HOMO and LUMO
levels are significantly changed. For example, for ad-
sorption of AsH3 on Fe-PS-SWCNT configuration, the
HOMO is stabilized from − 3.87 to − 4.53 eV and the
LUMO is destabilized from − 3.76 to − 2.58 eV
(Table 5). The shapes of the HOMO and LUMO are
changed in accordance with the energy change. As
shown in Fig. 7, the HOMO level of structures is
shifted on Fe atom, near rings, and AsH3 molecule
and the LUMO is generally distributed on all atoms of
tube. The change of the energy of the LUMO level is
much more than that of the HOMO level for AsH3/Fe-
PS-SWCNT and AsH3/Fe-5775-SWCNT, and thus, the
HLG is significantly changed by about 1672% and
664%, respectively.

Fig. 7 The plots of HOMOs (left) and LUMOs (right) of a AsH3/Fe-PS-
SWCNT, b AsH3/Fe-5775-SWCNT, and c AsH3/Fe-7557-SWCNT d
pristine SWCNT, computed at the B3LYP/LanL2DZ level

Table 5 The highest occupied molecular orbital energies (EHOMO), the
lowest unoccupied molecular orbital energies (ELUMO), and HOMO-
LUMO energy gap (HLG) of Fe-doped pristine (Fe-PS-SWCNT) and
Fe-doped Stone-Wales-defected SWCNT (Fe-5775-SWCNT and Fe-
7557-SWCNT) and their AsH3 adsorption structures

Species ELUMO EHOMO HLG

Fe-PS-SWCNT − 3.76 − 3.87 0.11

AsH3/Fe-PS-SWCNT − 2.58 − 4.53 1.95

Fe-5775-SWCNT − 3.76 − 4.01 0.25

AsH3/Fe-5775-SWCNT − 2.69 − 4.60 1.91

Fe-7557-SWCNT − 2.95 − 4.96 2.01

AsH3/Fe-7557-SWCNT − 2.77 − 4.83 2.06
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All calculations of adsorption energies (Eads) and electronic
properties (HLG) suggest that the interactions between the
AsH3 molecule and the Fe-doped structures are stronger than
the interactions between the AsH3 molecule and the undoped
structures. So, the Fe-PS-SWCNT and Fe-5775-SWCNT sys-
tems had the potential capacities to develop sensors for AsH3

toxic gas detecting.

Conclusions

Using the density functional theory (DFT)method, we explored
that possibility of Stone-Wales-defected carbon nanotube
(CNT) doped with Fe as a potential efficient sensor device for
the arsine (AsH3) gas molecule. The results indicated that the
presence of Stone-Wales defect and the dopant increased the
sensitivity of CNT substrate toward the arsine molecule.
Furthermore, the band gap was increased during the adsorption
of arsine molecule on the Fe-doped and Stone-Wales-defected
Fe-doped CNTs which could be seen as an electric signal to
detect the arsine molecule. The findings of the present study
will lay a road in the development of chemical nanosensor
based on CNT material for arsine detection.
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