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Highlights 

 The fuzzy inference system was used to develop a rainbow trout rearing index. 

 The study farm with a rearing index value of 65 was in a very good range. 

 Water quality parameters directly affected rainbow trout rearing condition.    

 

 

Abstract  

Rainbow trout (Oncorhynchus mykiss) is one of the most popular aquacultured species in the 

world. Sustainable production of this fish at commercial scale is very important but requires 

maintaining good water quality throughout the total rearing period. The present study aimed to 

develop a rainbow trout production index in order to raise awareness about the conditions of the 

rearing environment, enhance production, and reduce losses. For this purpose, an intensive 

rainbow trout production system was selected as the study system. In this system, there were seven 

stations including (a) 3000 5-g fish, (b) 3000 25-g fish, (c) 3000 50-g fish, (d) 3000 100-g fish, (e) 

3000 220-g fish, (f) 2000 350-g fish, and (g) 2000 830-g fish. The fuzzy inference system was 

used to develop the target rearing index. Water quality parameters involved in the variation in the 

rainbow trout rearing conditions were classified into three groups including un-ionized ammonia, 

nitrite, and nitrate, Alkalinity and phosphate, along with dissolved oxygen and linear velocity. For 

each group and condition of rearing, a separate fuzzy inference system was defined and the output 

of each fuzzy system was named I1, I2, I3. Finally, I1, I2, and I3 were considered as the inputs to a 

fuzzy system in order to evaluate their effects on the index of general rearing conditions (I). The 

results indicated that un-ionized ammonia, nitrite, nitrate, and phosphate had negative effects while 

dissolved oxygen, linear velocity, and alkalinity positively affected water quality and rearing 

index. Most of the decline in the rainbow trout rearing index was related to the effect of un-ionized 

ammonia, nitrite, and nitrate due to food decomposition. Therefore, intelligence feeding based on 

fish appetite through reducing food conversion rate and water pollution can improve rainbow trout 

production in this system. The index of rainbow trout production conditions reflects the type, 

amount, and effect of water quality pollutants on rearing conditions. Producers can use this 

information to reduce the negative environmental effects and improve the product quality.       

Keywords: Fuzzy Inference, Rearing Index, Rainbow Trout 
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1.Introduction 

Water quality parameters are closely related to both fish health and environmental quality.   

Organic aquaculture can help maintain natural environment, biodiversity, and animal welfare, 

which include the ecologically integrated systems enhancing the quality and health of the products. 

Water quality and effluent are considered as serious concerns in the ecosystems (Lembo and 

Mente, 2019), and good water quality is one of the vital requirements of successful aquaculture. 

Food input leads to the reduction of water quality in the pools and increase of stress. As the food 

input increases, the metabolic waste entering the pools increases as well. Due to the food input, 

the concentration of phytoplanktons, total ammonia, and carbon dioxide increases while the 

concentration of dissolved oxygen decreases (Anyadike et al., 2016). 

 Water quality is usually determined through toxicity tests, which assess the tolerance power 

of various aquatic organisms against different toxic ingredients. Each aquatic species can have a 

different response to a specific toxic compound (Carbajal-Hernández et al., 2012). Although water 

quality may be simultaneously reduced by different environmental factors, focusing on major ones 

can make water conservation and renewal more economic and facilitate determining management 

priorities (Li et al., 2015). In this regard, dependable monitoring and assessment programs are 

required for the numerous and complicated changes in water quality in order to achieve a 

comprehensive understanding of pollution and its effects. Long-term monitoring generates a large 

set of intricate data. Accordingly, more suitable techniques to manage water quality variables, 

acceptable range interpretation of each parameter, and methods to integrate different parameters 

in the evaluation process are clearly required (Ferreira et al., 2011). 

 Artificial intelligence methods are regarded as a suitable substitute technique for modeling 

a complex and non-linear system in many fields (Liu et al., 2013). Fuzzy models are the most 
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widely used artificial intelligence technique water quality modeling with the benefits of flexibility, 

clarity, and user friendliness (Akerkar and Sajja, 2010). Such models discover the nonlinear 

relationships between ecological variables with regards to the inherent uncertainty of the variables 

(Kampichler et al., 2000). In addition, the indicators, as a representative of the constituted 

elements, integrate scientific knowledge in order to facilitate decision-making (Valenti et al., 

2018).  

Carbajal-Hernández et al. (2012) developed an indicator to evaluate the water quality for 

shrimp culture based on a fuzzy inference system. To this end, the water quality parameters were 

classified and the negative environmental effects of the parameters in the shrimp habitat were 

evaluated by the fuzzy inference system. Then, the most important parameters were prioritized 

using hierarchical analysis and finally, a new indicator was developed to assess the ecological 

condition of water quality. In another study, Forio et al. (2017) used a fuzzy inference system to 

identify the key factors in the water quality of the aquatic ecosystems in the America Guayas River 

Basin. The variables of the system included land use, chlorophyll, and flow velocity. The results 

of the study indicated that land use played the most determining role in the water quality of aquatic 

ecosystems in that area. In addition, Bórquez-Lopez et al. (2018) evaluated two methods of fuzzy 

logic and mathematic functions as two dynamic feeding strategies in the intensive shrimp culture 

system. They used dissolved oxygen and temperature variation in both methods. The results 

demonstrated that the dissolved oxygen significantly affected food conversion rate while the effect 

of temperature on the rate was not much significant. Further, the results demonstrated that food 

conversion rate considerably improved in the fuzzy logic strategy. About 35% of food was saved 

compared to the control group, i.e. the conventional feeding table. In a study conducted by Zhou 

et al. (2018), a feeding control method was proposed based on machine vision, near-infrared, and 

adaptive network-based fuzzy inference system in order to achieve auto decision-making feeding 

based on fish appetite. The quantitative index of fish feeding behavior was extracted by Delaunay 

triangulation and image texture. Network-based fuzzy inference system was established based on 

fuzzy rules and was employed to obtain auto on-demand feeding. The performance of the method 

was evaluated using specific growth rate, weight gain rate, food conversion rate, and water quality 

parameters. Based on the results, the accuracy of the feeding decision of the adaptive neural-based 

fuzzy inference system (ANFIS) was 98%. Although, this method did not show a significant 

difference in the growth promotion of fish compared to the feeding table, food conversion rate 
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could be reduced by 10.77% and water pollution could be also lowered.  Furthermore, Wu et al. 

(2015) employed fuzzy logic controller and adaptive network-based fuzzy inference system to 

support decision-making about the feeding process of silver perch based on fish appetite. Fish 

appetite was detected by measuring the concentration of dissolved oxygen through evaluating two 

flocking indexes and struggle strength characteristics. The results indicated that a decision 

threshold of 0.17 was inferred from the fuzzy logic method, and the rate of judgment accuracy of 

97.9% was obtained from ANFIS.  

The results of the previous studies revealed that how fuzzy inference system can quickly and 

accurately predict the relationship between water quality parameters, evaluate the importance of 

each parameter, and report the condition of water quality as one integrated score. The producers 

in organic aquaculture aim to avoid the negative environmental effects on production procedures 

with the lowest price (Luna et al., 2019). Therefore, since water quality in any aquaculture system 

represents the condition of aquatics rearing, awareness of water quality can provide a framework 

to eliminate possible risks, such as diseases, incidence, and mortality, and control the production 

condition without any cost. The present study aimed to develop a rearing index for rainbow trout 

based on the effect of the essential parameters, including dissolved oxygen and linear velocity, as 

well as the contaminant parameters, including un-ionized ammonia, nitrite, nitrate, phosphate, and 

alkalinity, of water quality by using a fuzzy inference system. Developing such an urgent and 

comprehensive rearing index for raising awareness about water quality is considered as an 

innovation in organic aquaculture, which undoubtedly helps farmers control and manage aquatic 

systems effectively. Accordingly, they can prevent great losses and treatment costs through timely 

actions.   

2. Materials and methods 

2.1. Study area and system  

The study area was a fish production farm in the Ortkand area, Kalat County, Razavi 

Khorasan province in Iran (36 59 N, 59 46 E). The farm was located in the mountainous area 

of the Sarrud village and the water was supplied from Ortkand River with a minimum and 

maximum discharge of 600 and 2300 l /s, respectively. The farm produced 80 t fish and 10 million 

fingerlings every year (Fig. 1). The study system was an intensive aquaculture system with seven 

stations including (a) 3000 5-g fish, (b) 3000 25-g fish, (c) 3000 50-g fish, (d) 3000 100-g fish, (e) 
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3000 220-g fish, (f) 2000 350-g fish, and (g) 2000 830-g fish. The system had concrete pools with 

the dimensions of 30 × 3 × 2 m3. The pools were filled with the river water and the depth of water 

in them was 2 m. The schools of fish evaluated in this study were from a native trout species in 

Iran, which were different in terms of evolutionary stages. In the schools, the fish weighing up to 

1 gr were classified as frys, fish weighing 25-30 gr as fingerlings, fish up to 100 gr as pre-fattened, 

and fish over 150 and under 1000 gr were classified as fish fattened (Nafisi Behbaadi, 2006). 

2.2. Data collection 

The present study employed the physical parameters, such as linear velocity, and chemical 

parameters, such as un-ionized ammonia, nitrite, nitrate, alkalinity, phosphate, and dissolved 

oxygen, of water quality in fuzzy inference systems in order to develop a model for assessing the 

rearing conditions of rainbow trout. Dissolved oxygen (mg/L) was measured using the Portable 

multimeter model AZ-8603 with 0.01 precision. The linear velocity was obtained by dividing the 

flow rate of the input water in each pool into the surface of the pool (Eq.1): 

𝑉 =
𝑄

𝑆
 

(1) 

Where V denotes linear velocity (cm/s), Q denotes the flow rate of input water in each pool 

(m3/s), and S denotes the surface of each pool (m2).   

The parameters such as un-ionized ammonia (mg/L), nitrite (mg/L), nitrate (mg/L), 

phosphate (mg/L), and alkalinity (mg/L) were measured by the ultraviolet visible 

spectrophotometer apparatus DR 5000 ™ model. 

2.3. Fuzzy inference system 

Fuzzy inference is a process which maps the input data to output data based on fuzzy logic. 

Decision-making can be done based on mapping or pattern recognition (Ocampo-Duque et al., 

2006). In general, the process of evaluating the fuzzy inference system in comprised of three stages 

including fuzzification, inference, and defuzzification. In the first stage, the inputs are read and the 

degree of their membership to each of the fuzzy sets are determined through membership 

functions. The output of this step is a fuzzy degree between zero and one, determining the amount 

of input membership in the fuzzy set. Fuzzy rules are actually the heart of the fuzzy system, which 

describe the relationship between the fuzzy sets defined in the fuzzy inference system with each 
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other and how they affect the output. The duty of the fuzzy inference engine is to calculate the 

fuzzy output by considering and combining fuzzy rules. In other words, the fuzzy inference engine 

learns how to convert a collection of inputs into outputs by calculating any of the fuzzy rules in 

the fuzzy rules base. Defuzzification is the last principal stage of any fuzzy system, which specifies 

each point in a fuzzy set in the form of a precise number as an output (Hosseini, 2018). 

2.4. Developing a rainbow trout rearing index 

After collecting the required data and in order to facilitate investigating the effect of the 

interaction between water quality parameters on the changes in rainbow trout rearing conditions, 

the data were classified into three groups including un-ionized ammonia, nitrite, and nitrate as the 

first group, Alkalinity and phosphate as the second group, and dissolved oxygen and linear velocity 

as the third group according to the degree of adaptation and coordination. Then, a separate fuzzy 

inference system was defined for each group and rearing condition, and the outputs of each fuzzy 

system, which was in fact the same rainbow trout rearing index, were named as I1, I2, I3. Finally, 

I1, I2, and I3 were considered as the inputs to a fuzzy system in order to evaluate their effects on 

the index of general rearing conditions (I) and study the overall effect of all water quality 

parameters on the rearing index (Fig. 2). 

2.5. Extended fuzzy systems  

The fuzzy system (1) consisted of three input parameters, including un-ionized ammonia, 

nitrite, and nitrate, 125 laws, and an output parameter (I1). The fuzzy systems (2) and (3) each one 

consisted of two input parameters, the first were alkalinity and phosphate and the second were 

dissolved oxygen and linear velocity, 25 laws, and one output parameter (I2 in the second system 

and I3 in the third system). Finally, the fuzzy system (4) included three input parameters, i.e. I1, I2, 

and I3, 125 laws, and one output parameter (I). Fig. 3 illustrates an overview of the four fuzzy 

systems. Triangular and trapezoidal membership functions were used for input and output 

parameters. For each membership function related to the input parameters, five linguistic 

expressions were defined including very low (VL), low (L), moderate (M), high (H), and very high 

(VH). Regarding the membership functions associated with the output parameters, five linguistic 

expressions including very bad (VB), bad (B), good (G), very good (VG), and excellent (E) were 

considered. The membership functions used for the parameters of un-ionized ammonia, nitrite, 

nitrate, and I1 are shown in Fig. 4, which are similar to the membership functions associated with 
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other parameters. For each parameter, five fuzzy sets were determined corresponding to the related 

linguistic expressions. For instance, the output parameter rearing index varied from very bad (0-

35), bad (20-50), good (35-65), very good (50-80) to excellent (65-100). In addition, the units, 

domain, and fuzzy sets were defined for the input and output parameters of the fuzzy systems and 

are presented in Table 1. 

The rules defined for fuzzy systems in the present study are based on the science of the 

specialists’ knowledge in the aquaculture sector and available resources (Nafisi Behbaadi, 2006; 

Parsley Barry, 2001). For example, the first rule of the fuzzy system (1) is "If the concentration of 

un-ionized ammonia is very low and the concentration of nitrite is very low and the concentration 

of nitrate is very low, then the rainbow trout rearing index is at an excellent level". Further, the 

first rule of the fuzzy system (2) states that "If the amount of alkalinity is very low and the 

concentration of phosphate is very low, then the rainbow trout rearing index is at a bad level". 

Furthermore, the first rule of the fuzzy system (3) expresses that "If the concentration of dissolved 

oxygen is very low and the linear velocity is very low, then the rainbow trout rearing index is very 

bad". Finally, in the fuzzy system (4), the first rule is “If I1 is very bad and I2 is very bad and I3 is 

very bad then, the rainbow trout rearing index is at a very bad level". Other rules were similarly 

defined. The subscription operator and Mamdani fuzzy inference system was used to construct the 

rules and aggregation, and the gravity center method  was employed for defuzzification. These 

methods were implemented in the MATLAB software (version 2016b). 

3. Results and discussion 

3.1. Analysis of fuzzy models  

The rainbow trout rearing index was 65, which was in the range of very good. The results of 

the four fuzzy inference systems are presented in the form of surface response diagrams in Fig. 5. 

As can be seen, increasing the un-ionized ammonia, nitrite and nitrate concentration leads to the 

decrease in value of the rainbow trout rearing index. Although ammonia and nitrite are toxic and 

dangerous substances in rainbow trout rearing environment, rainbow trout is sensitive to low 

ammonia concentrations, i.e. less than 0.02 mg/L. Nitrite is produced by Nitrosomonas bacteria as 

a result of ammonia oxidation. Another toxic substance is nitrate, which is produced by Nitrobacter 

bacteria due to the oxidation of nitrite in water sources. In general, nitrate in low concentrations, 

i.e. less than 300 mg/L, is not considered as hazardous for rearing rainbow trout. However, in some 
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conditions such as recirculating aquaculture systems, its concentration increases to a very high 

amount, i.e. over 1000 mg/L, which is dangerous. Under such conditions, nitrate must be removed 

from the environment by fresh water (Nafisi Behbaadi, 2006). Therefore, increasing the 

concentration of these substances can decrease the rainbow trout rearing index as indicated in Fig. 

5(a-b). Dissolved oxygen in water is one of the major factors in cold water fish rearing since this 

fish needs more oxygen than warm water fish. In general, the dissolved oxygen in the input water 

to the rainbow trout farms should be at the saturation level (Nafisi Behbaadi, 2006). Since the 

variations of the flow velocity change the concentration of dissolved oxygen (Wu et al., 2015), 

there is a direct relationship between these two. Accordingly, increasing these parameters can 

increase the rainbow trout rearing index as shown in Fig. 5(c). Tallar and Suen (2016) developed 

an indicator for assessing the quality of aquaculture based on the parameters of dissolved oxygen, 

fecal coliform, ammonia, and pH. The results of multiple regression analysis in their study 

indicated that the aquaculture water quality index had a positive and significant correlation with 

dissolved oxygen and fecal coliform. Thus, increasing the dissolved oxygen results in increasing 

the aquaculture water quality while increasing the ammonia and pH decreases the quality. The 

results of Tallar and Suen’s (2016) study are consistent with those of the present study. Phosphate 

is considered as one of the main sources of water pollution and is dangerous to aquatic organisms, 

leading to a decrease in the rainbow trout rearing index. However, Fig. 5(d) displays that increasing 

alkalinity is beneficial due to the reduced sensitivity of fish to carbon dioxide, and it increases the 

rainbow trout rearing index (Nafisi Behbaadi, 2006). In general, any changes in the concentration 

of water quality parameters have a direct effect on the variation of total rainbow trout rearing index 

as illustrated in Fig. 5(e-f). In a study by Yalcuk and Postalcioglu (2015), the pool water quality 

was evaluated in a four-trout farm with different sources, including the input of water from the 

mountain for three farms and from the artesian for one farm, and at different times, i.e. once a 

week in hard conditions and twice a week during normal times, in the form of chemical oxygen 

demand, nitrogen ammonium, pH, and electrical conductivity through a fuzzy inference system. 

The results demonstrated the effectiveness of the fuzzy inference system method in predicting 

water quality parameters in trout production pools. It is difficult to compare the results of their 

study to those of the present study since the parameters, water supply sources of the pools, and 

sampling climate conditions of the studies are different. Nevertheless, the results are similar to 

each other. In the present study, the essential and contaminated parameters of rainbow trout rearing 
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and their interactions were evaluated. One integrated score was allocated to the rainbow trout 

rearing conditions in the system understudy. Since fish had different weights and sizes in the 

system of the present study, the results can cover all the growth stages of rainbow trout.  Further, 

the linear velocity was considered, which indicated the dissolved oxygen variation as the most 

essential element in culturing the rainbow trout. However, the numerous number of rules, types of 

membership functions, selection of parameters, and determination of fuzzy sets could be sources 

of error in the present study.  

3.2. Intelligence methods and controlling water quality 

Water quality in intensive aquaculture can be drastically reduced by food input and  food is 

regarded as one of the main sources of costs (Zhou et al., 2018). The present study identified un-

ionize ammonia, nitrite, and nitrate as the main pollutants of water quality, produced as a result of 

food decomposition. Inappropriate and unreasonable feeding led to considerable waste of food as 

leftover, an increase in fish faces, and consequently significant water contamination and economic 

losses. In addition, traditional feeding approach is arduous and susceptible to error since it depends 

on the operator’s observation and experience. Therefore, it is necessary to investigate and apply 

more precise tools and methods for managing production and nutrition in aquaculture (Wu et al., 

2015). Nowadays, intelligent methods, such as fuzzy inference system and adaptive network-based 

fuzzy inference system, are developed in order to control the feeding process. Such expert methods 

can significantly reduce food waste and water pollution, save a lot of money, and create sustainable 

aquaculture production by precisely estimating fish appetite, food searching behavior, and main 

variations in water quality parameters, such as dissolved oxygen, temperature, and nitrogenous 

compounds (Hosseini et al., 2018;  Lopez et al., 2018; Wu et al., 2015;  Zhou et al., 2018).  

3.3. Benefits of present study for rainbow trout farmers              

The present study and similar research help to increase the production and improve the 

performance of rainbow trout by informing producers about the condition of the production 

system. Being aware about the general rearing conditions in the form of one integrated score is a 

simple and understandable approach which helps the aquaculturists to better manage different 

decisions, including the necessary arrangements to control the rearing system and increase profits. 

The results of the present study can be a starting point for further research and developing an 
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application, which can establish a mutually beneficial contact between experts and farmers for a 

sustainable production system. 

  

4. Conclusion 

In the present study, the fuzzy inference system was used to develop a rainbow trout rearing 

index in an intensive production system in Iran. The farm understudy was in a very good range 

with the rainbow trout rearing index of 65. The results indicated that there is a close relationship 

between the parameters of water quality and rainbow trout rearing conditions. Increasing 

ammonia, nitrogenous compounds such as nitrite and nitrate, and phosphate decreases the rainbow 

trout rearing index whereas increasing the dissolved oxygen, linear velocity, and alkalinity 

increases the index and improves the growth performance of the fishes.  
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Table 1 

 Fuzzy sets and thresholds related to input and output parameters in rainbow 

trout rearing condition model. 

Fuzzy set parameters Range Units Variable 

)-∞ 0.1  0.13 0.14) 

(0.13 0.14 0.15 ) 

(0.14 0.15 0.16) 

(0.15 0.16 0.17 ) 

(0.16 0.17 0.2 ∞) 

 

(0.0-1.2) 

 

 

 

(mg/L) 

 

NH3 

 

(-∞ 0 0.1 0.15) 

(0.1 0.15 0.2 ) 

(0.15 0.2 0.25 ) 

(0.2 0.25 0.3 ) 
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 Fig. 1. Study farm in Orktand region, Kalat County, Razavi Khorasan Province, Iran. 
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Fig. 2. The general structure of the fuzzy inference systems developed in this study (Fuzzy system(1): Investigate the relationship 

between un-ionized ammonia, nitrite, nitrate and indicator of rainbow trout rearing conditions; Fuzzy system(2): Assess the 

relationship between phosphate and alkalinity with the index of rainbow trout rearing conditions;  fuzzy system(3): Evaluate the 

relationship between dissolved oxygen and linear velocity with index of rainbow trout rearing conditions; fuzzy system(4): It 

combines the results of the relationship between un-ionized ammonia, nitrite, nitrate, phosphate, alkalinity, dissolved oxygen and 

linear velocity with index of rearing conditions, and provides a general index for rainbow trout rearing conditions. Jo
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Fig. 3. Overview of the fuzzy systems constructed in this study (a) The general structure of the fuzzy system(1); (b) The general structure of the 

fuzzy system(2); (c) The general structure of the fuzzy system(3); (d) The general structure of the fuzzy system(4). 
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(Dm: Degree of memberships)  parameters 1ammonia, nitrite, nitrate and I ionized-unMembership functions used for 4.  .Fig 
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Fig. 5. Response surface diagrams derived from fuzzy inference systems (a: represents variation of the rearing 

index in relation to changes in un-ionized ammonia and nitrate concentrations; b: indicates variation of the 

rearing index in relation to changes in ammonia and nitrite concentrations; c: shows the  variation of the rearing 

index relative to changes in dissolved oxygen concentrations and linear velocity; d: shows  variation of the 

rearing index relative to changes in phosphate and alkalinity concentrations; e: illustrates  variation of rearing 

index relative to I1 and I2 changes; f: shows the rearing index changes relative to the I1 and I3 changes.) 
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