

PEC sensing of glucose using one dimensional TiO₂ nanostructure modified by two dimensional material

PEC sensing of glucose using one dimensional TiO₂ nanostructure modified by two dimensional material

Ali Akbar Saadati

Dr N. Naseri

Outline

- Introduction
- TNAs (TiO₂ Nanotube Arrays) Preparation
- TNAs Characterization
- PEC Performances & Glucose Detection
- Modification by 2D Material
- Mechanism of Sensing Process
- TNW (Branched TiO₂ Nanowire) Preparation
- TNW Characterization
- PEC Performances & Glucose Detection
- Conclusion

Concerns about Diabetes

Concerns about Diabetes

Diabetes in Children

World Health Organization (WHO) International Diabetes Federation (IDF)

www.idmouse.com

www.stocklogos.com

Glucose Sensing

Enzymatic Sensors

- Using Enzyme as Catalysis
- Acceptable Selectivity & Sensitivity
- Depending on Temperature, pH, Humidity, ...
- o Low Stability
- Low Reproducibility

Non Enzymatic Sensors

- Using Nanostructured Materials
- Good Sensitivity
- High Stability & Reproducibility
- Low Detection Limit
- Low Selectivity

Using light •

- Using Interaction with Glucose Using Light & Interaction
- High Signal to noise
- **High Sensitivity**
- Low Detection Limit

- Low Cost
- Simple Method
- High Sensitivity
- Low Selectivity

- **Depending on Temperature, ... Non-biocompatible**
- Interfered by other Samples • High Cost
- Low Selectivity

• Low Selectivity

Why TiO₂ material for Sensing?

J. Bai et al., Chem. Rev., 2014

Why TiO₂ Nanotube for Sensing?

Y. Pang et al., Dalton Trans., 2015

✓ Simple Preparation

✓ Adjustable Length, Wall thickness & Diameter

- ✓ Vertically Aligned
- ✓ High Surface Area
- ✓ Open mouth
- ✓ High Stability

Photoelectrochemical Performances and Potential Applications of TiO₂ Nanotube Arrays Modified with Ag and Pt Nanoparticles

Literature Review

G. Xu et al. Electrochimica Acta. 2014

G. Xu et al. Electrochimica Acta. 2014

Department of Physics

CrossMark

Cite this: Dalton Trans., 2015, 44, 17784

Photoelectrochemical properties and the detection mechanism of Bi₂WO₆ nanosheet modified TiO₂ nanotube arrays

Y. Pang et al. Dalton Trans., 2015

The Length and Annealing Ambient of TNAs toward Glucose Sensing

Optimum TNAs by 2D Material to Improve Glucose Sensing

XRD pattern of TNAs grown for 2 h

Surface Morphology

> Anodization time did not change the surface morphology of tubes

> Anodization time change the tube length

Anodization time	Length	Wall thickness	Diameter
(min)	(µm)	(nm)	(nm)
30 ± 1	$\textbf{0.60} \pm \textbf{0.04}$	NA	NA
60 ± 1	1.45 ± 0.05	NA	NA
120 ± 1	$\textbf{2.70} \pm \textbf{0.06}$	14 ± 2	138 ± 10
240 ± 1	$\textbf{3.96} \pm \textbf{0.06}$	15 ± 2	143 ± 13

PEC Measurement

Department of Physics

✓ Electrolyte: 0.1M NaNO₃
✓ Light : UV Lamp, λ=368 nm
✓ Electrodes: Ag/AgCl & Pt

-30

-0.3

1.2

0.7 Potential (V)

0.2

✓ Sensitivity increase with anodization time

Standard deviation increase with time

t(h)	I _{ph} (μA)	α (µA/mM.cm²)	C ₀ (mM)
0.5	46.1 ± 0.6	55.0 ± 15.5	0.04 ± 0.00
1	43.5 ± 8.6	145.4 ± 32.8	0.12 ± 0.03
2	53.7 ± 3.7	244.5 ± 48.0	0.14 ± 0.01
4	57.9 ± 1.1	255.5 ± 62.9	0.18 ± 0.01
$2h - Ar/H_2$	72.9 ± 1.7	188.4 ± 8.7	0.18 ± 0.02

Conclusion

- Optimum Preparation Condition: 2h Anodization and Annealing in air
- > Sensitivity Factor of Optimum Sample: 244.5 \pm 48.0 μ A/mM.cm²
- Upper Performance Limit of Optimum Sample: 0.14 ± 0.01 mM

Optimum TNAs can act as a promising semiconductor host for future modification

2D Material

R. Jalili et al, Mater. Horiz., 2014

TNAs/Graphene

TNAs/S-GO

TNAs/S-GO

Surface Morphology

Glucose Sensing on TNAs Department of Physics

Background Photocurrent

XRD pattern of TNW

Surface morphology

Department of Physics

Hydrothermal time did not change the surface morphology of wire

Wire Thickness: Bead Size:

39

80 nm 65 nm

Potential (V)

2

0

0.08

0.16

Consenteration (mM)

0.32

0.24

Optimizing Diameter and Wall Thickness of Tubes

Modification by Graphene Oxide and Important Electrocatalyst Composition

Trying other precursors and Substrates

Trying other Preparation Methods

Sensing

Trying other Active Species

the states of Paper International Biennial Conference on UltraFine Grained and NanoStructured Materials NSM 2017 12-13 November 2017 International Convention Center, Kish Island, Iran OF TEHRAS Enhancing PEC Glucose Sensing of TiO₂ Nanotubes by **Tuning the Length and Annealing Ambient** A.A. Saadati^{1, a)}, M.M. Tahmasebi^{1, b)} and N. Naseri^{1, c)}

Oral Presented by Ali Akbar Saadati

Department of Physics

PEC sensing of glucose using one dimensional TiO₂ nanostructure modified by two dimensional material

Clean Energy Lab

Sharif university of technology

Department of Physics

